Worksheet Ideas for the Mathematics Reading Day Study Session Math 1553, Spring 2017

1. The following are instructions for a linear algebra game, MatrixToe. It is similar to tic-tac-toe, and is meant for two players.

- There are two players, the 1-player (1P) and the 0-player (0P).
- 0 P and 1 P take turns placing numbers into an empty $N \times N$ matrix
- the game ends when all the matrix elements have a number.
- 1P: can only place 1's in the matrix, wins if the matrix is invertible.
- OP: can only place 0's in the matrix, wins if the matrix is singular.
(a) Let $N=3$. Decide who is the 1 P and the 0 P , who goes first, play a few games of Matrix Toe, and determine who won for each game.
a) Game 1 : (\quad)

Who won? ___ Why?
b) Game 2:

Who won? \qquad Why?
c) Game 3:

Who won? \qquad Why?
(b) Describe at least three strategies that the 0P might use to win.
(c) If possible, fill in the missing elements of the matrices below with numbers 0 or 1 , so that each of the matrices are singular. If it is not possible to do so, state why.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & & 1 \\
0 & 0 & 1
\end{array}\right), \\
& D=\left(\begin{array}{lll}
1 & & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad E=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
& & 1 & 1 \\
& & & 1
\end{array}\right)
\end{aligned}
$$

Hint: you can solve this problem by inspection. You don't need to use row reduction. A few games of MatrixToe may help you see why.
2. If possible, give an example of the following.
(a) A matrix whose columns form an orthogonal basis for \mathbb{R}^{4}.
(b) A matrix A that is in echelon form, and

$$
\begin{aligned}
\operatorname{dim}\left((\operatorname{Row}(A))^{\perp}\right) & =2 \\
\operatorname{dim}\left((\operatorname{Col}(A))^{\perp}\right) & =3
\end{aligned}
$$

(c) A vector $\vec{v} \in \mathbb{R}^{3}$ and a subspace W such that $\operatorname{proj}_{W} \vec{v}=\vec{v}$, and $\operatorname{dim}(W)=2$.
(d) An orthogonal matrix, in echelon form, whose columns span a 2-dimensional subspace of \mathbb{R}^{3}.
(e) A matrix C such that the linear system $C \vec{x}=\vec{b}$ is inconsistent but has a unique least-squares solution, where $\vec{x} \in \mathbb{R}^{3}$ and

$$
\vec{b}=\binom{1}{1}
$$

(f) A subspace S, of \mathbb{R}^{4}, that satisfies $\operatorname{dim}(S)=\operatorname{dim}\left(S^{\perp}\right)=2$.
(g) Two linearly independent vectors that are orthogonal to $\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$.
(h) A subspace, S, of \mathbb{R}^{3} such that $\operatorname{dim}\left(S^{\perp}\right)=2$.
(i) A 2×3 matrix whose columns are linearly independent.
(j) A 2×2 matrix that is invertible and does not have an LU decomposition.
(k) A 2×2 matrix whose eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=0$, and whose corresponding eigenvectors are

$$
\vec{v}_{1}=\binom{1}{0}, \quad \vec{v}_{2}=\binom{1}{2}
$$

(l) An invertible 2×2 matrix whose determinant is zero.
(m) A 2×2 matrix that is diagonalizable but not invertible.
(n) A 4×3 matrix in reduced echelon form, whose columns span \mathbb{R}^{4}.
(o) A 3×3 matrix C, that is in reduced echelon form, has exactly two pivots, and satisfies

$$
C\left(\begin{array}{c}
2 \\
-8 \\
1
\end{array}\right)=\overrightarrow{0}
$$

3. Match the items in the column on the left with the items in the column on the right. Some items match to multiple items.
(a) $\operatorname{Proj}_{\vec{x}} \vec{y}$
(b) A set of vectors includes the zero vector.
(c) $\operatorname{det} A \operatorname{det} B$
(d) Every column of A has a pivot
(e) A basis for $\operatorname{Col}(A)$.
(f) U is an orthogonal matrix.
(g) Orthogonal complement W^{\perp}
(h) $(\operatorname{Row} A)^{\perp}$
(i) $(\operatorname{Col} A)^{\perp}$
(j) Orthonormal vectors
(k) A is singular
(l) 0 is not an eigenvalue of A
(m) $P D^{k} P^{-1}$
(n) A is a 3×4 matrix with linearly independent columns.
(o) Orthogonal projection of \vec{y} onto V
(p) A does not have an LU decomposition
(q) A has the decomposition $A=P D P^{-1}$
(r) T is a linear transformation whose standard matrix, A, is one-to-one.
(I) $\{\vec{x}: \vec{x} \cdot \vec{w}=0$ for all $\vec{w} \in W\}$
(II) $\frac{\vec{x} \cdot \vec{y}}{\vec{x} \cdot \vec{x}} \vec{x}$
(III) Unit length, pairwise orthogonal
(IV) $\operatorname{det}(A)=0$
(V) Not possible
(VI) $\operatorname{det}(A) \neq 0$
(VII) $\left(P D P^{-1}\right)^{k}$
(VIII) Row swaps are needed to express A in echelon form.
(IX) Null A
(X) The vector $\hat{y} \in V$ closest to \vec{y}.
(XI) $\mathrm{Null} A^{T}$
(XII) The eigenvalues of A are distinct.
(XIII) Its columns are orthonormal.
(XIV) The vectors are linearly dependent.
(XV) The system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(XVI) The columns of A are linearly independent.
(XVII) The pivot columns of A.
(XVIII) $\operatorname{det}(A B)$
