Math 1553 Worksheet §3.6, 3.7, 3.8

1. Find bases for the column space and the null space of

$$A = \begin{pmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{pmatrix}$$

2. Consider the following vectors in \mathbf{R}^3 :

$$b_1 = \begin{pmatrix} 2\\2\\2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1\\4\\3 \end{pmatrix} \qquad u = \begin{pmatrix} 1\\10\\7 \end{pmatrix}$$

Let $V = \text{Span}\{b_1, b_2\}$.

- **a)** Explain why $\mathcal{B} = \{b_1, b_2\}$ is a basis for V.
- **b)** Determine if u is in V. If it is, find $[u]_{\mathcal{B}}$, the \mathcal{B} -coordinate vector of u.

c) Find a vector b_3 such that $\{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .

3. Answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.

a) If *A* is a 3×100 matrix of rank 2, then dim Nul*A* = 98.

- **b)** If *A* is an $n \times n$ matrix and $ColA = \mathbf{R}^n$, then Ax = 0 has a nontrivial solution.
- c) If A is an $m \times n$ matrix and Ax = 0 has a nontrivial solution, then the columns of A form a basis for \mathbf{R}^m .
- **d)** The empty set is a subspace of \mathbf{R}^{m} .
- **4.** Which of the following are subspaces of \mathbf{R}^4 ? Why or why not?

a)
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + y = 0 \text{ and } z + w = 0 \right\}$$

b)
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid xy - zw = 0 \right\}$$