Math 1553 Worksheet §3.6

1. Find bases for the column space and the null space of

$$
A=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 1 & 0 \\
1 & -1 & 8 & -7 & 1 \\
-1 & -2 & 1 & 4 & -1
\end{array}\right)
$$

2. Consider the following vectors in \mathbf{R}^{3} :

$$
b_{1}=\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) \quad b_{2}=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right) \quad u=\left(\begin{array}{c}
1 \\
10 \\
7
\end{array}\right)
$$

Let $V=\operatorname{Span}\left\{b_{1}, b_{2}\right\}$.
a) Explain why $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ is a basis for V.
b) Determine if u is in V.
c) Find a vector b_{3} such that $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a basis of \mathbf{R}^{3}.
3. For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
a) If A is an $n \times n$ matrix and $\operatorname{Col} A=\mathbf{R}^{n}$, then $A x=0$ has a nontrivial solution.
b) If A is an $m \times n$ matrix and $A x=0$ has only the trivial solution, then the columns of A form a basis for \mathbf{R}^{m}.
c) Give an example of 2×2 matrix whose column space is the same as its null space.
4. In each case, determine whether the given set is a subspace of \mathbf{R}^{4}. If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.
a) $V=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\mathbf{R}^{4} \mid x+y=0$ and $\left.z+w=0\right\}$
b) $W=\left\{\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)\right.$ in $\left.\mathbf{R}^{4} \mid x y-z w=0\right\}$
5. This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other.
a) True or false: If A is a 3×100 matrix of rank 2 , then $\operatorname{dim}(\operatorname{Nul} A)=97$.
b) For u and \mathcal{B} from problem 2 , find $[u]_{\mathcal{B}}$ (the \mathcal{B}-coordinates of u).
c) Let $\mathcal{D}=\left\{\binom{-2}{1},\binom{3}{1}\right\}$, and suppose $[x]_{\mathcal{D}}=\binom{-1}{3}$. Find x.

