Math 1553 Worksheet, Chapter 5

1. Let $A=\left(\begin{array}{rrrr}2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6\end{array}\right)$.
a) Compute $\operatorname{det}(A)$ using row reduction.
b) Compute $\operatorname{det}\left(A^{-1}\right)$ without doing any more work.
c) Compute $\operatorname{det}\left(\left(A^{T}\right)^{5}\right)$ without doing any more work.
2. Compute the determinant of

$$
A=\left(\begin{array}{cccc}
4 & 0 & 0 & 5 \\
1 & 7 & 2 & -5 \\
3 & 0 & 0 & 0 \\
8 & 3 & 1 & 7
\end{array}\right)
$$

using cofactor expansions. Expand along the rows or columns that require the least amount of work.
3. If A is a 3×3 matrix and $\operatorname{det}(A)=1$, what is $\operatorname{det}(2 A)$?

Supplemental Problems

These are additional practice problems after completing the worksheet.

1. Let A be an $n \times n$ matrix.
a) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has a row or a column of zeros.
b) Using cofactor expansion, explain why $\operatorname{det}(A)=0$ if A has adjacent identical columns.
2. Find the volume of the parallelepiped naturally formed by $\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$, and $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$.
3. Is there a 3×3 matrix A with only real entries, such that $A^{4}=-I$? Either write such an A, or show that no such A exists.
4. Find the inverse of

$$
A=\left(\begin{array}{lll}
4 & 1 & 4 \\
3 & 0 & 2 \\
0 & 5 & 0
\end{array}\right)
$$

using the formula

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right)
$$

