Math 1553 Worksheet §6.1

1. Sing the eigenvector song: \mathcal{F} an eigenvector is a v where A times v is λv. . d
2. Determine whether the following statements are always true or sometimes false. In the latter case, correct it to make a true statement.
a) A matrix A is not invertible if 0 is an eigenvalue of A.
b) If v_{1} and v_{2} are linearly independent eigenvectors of A, then they must correspond to different eigenvalues.
c) The entries on the main diagonal of A are the eigenvalues of A.
d) The eigenvectors are in the range of the matrix $A-\lambda I$.
e) The number λ is an eigenvalue of A if and only if there is a nonzero solution to the equation $(A-\lambda I) x=0$.
f) To find the eigenvectors of A, we reduce the matrix A to row echelon form.
3. Find a basis for the (-1)-eigenspace of the following matrices.
a) $A=\left(\begin{array}{ccc}2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1\end{array}\right)$
b) $A=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$
4. In what follows, T is a linear transformation with matrix A. Find the eigenvectors and eigenvalues of A without doing any matrix calculations. (Draw a picture!)
a) $T=$ identity transformation of \mathbf{R}^{3}.
b) $T=$ projection onto the $x z$-plane in \mathbf{R}^{3}.
c) $T=$ counterclockwise rotation by $\pi / 4$ in \mathbf{R}^{2}.
d) $T=$ reflection over $y=2 x$ in \mathbf{R}^{2}.
