Math 1553 Worksheet §6.1

- **1.** Sing the eigenvector song: Λ an eigenvector is a v where A times v is λv . Λ
- **2.** Determine whether the following statements are always true or sometimes false. In the latter case, correct it to make a true statement.
 - a) A matrix *A* is not invertible if 0 is an eigenvalue of *A*.
 - **b)** If v_1 and v_2 are linearly independent eigenvectors of *A*, then they must correspond to different eigenvalues.
 - c) The entries on the main diagonal of *A* are the eigenvalues of *A*.
 - **d**) The eigenvectors are in the range of the matrix $A \lambda I$.
 - e) The number λ is an eigenvalue of *A* if and only if there is a nonzero solution to the equation $(A \lambda I)x = 0$.
 - f) To find the eigenvectors of *A*, we reduce the matrix *A* to row echelon form.
- **3.** Find a basis for the (-1)-eigenspace of the following matrices.

a)
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 4. In what follows, *T* is a linear transformation with matrix *A*. Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)
 a) *T* = identity transformation of R³.
 - **b)** T = projection onto the *xz*-plane in \mathbb{R}^3 .
 - c) $T = \text{counterclockwise rotation by } \pi/4 \text{ in } \mathbf{R}^2$.
 - **d)** $T = \text{reflection over } y = 2x \text{ in } \mathbb{R}^2.$