Math 1553 Worksheet §§6.4, 6.5

1. Answer yes / no / maybe. In each case, A is a matrix with real entries.
a) If A is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda-5)^{2}$, then the 5eigenspace is 2-dimensional.
b) If A is an invertible 2×2 matrix, then A is diagonalizable.
c) Can a 3×3 matrix A have a non-real complex eigenvalue with multiplicity 2 ?
d) Can a 3×3 matrix A have eigenvalues 3,5 , and $2+i$?
2. Let $A=\left(\begin{array}{rrr}8 & 36 & 62 \\ -6 & -34 & -62 \\ 3 & 18 & 33\end{array}\right)$.

The characteristic polynomial for A is $f(\lambda)=-\lambda^{3}+7 \lambda^{2}-16 \lambda+12$. Decide if A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
3. Let $A=\left(\begin{array}{rr}1 & 2 \\ -2 & 1\end{array}\right)$.
a) Find all (real and) eigenvalues and eigenvectors of A.
b) (After finishing $\S 5.5$ in lecture.) Write $A=P C P^{-1}$, where C is a rotation followed by a scale. Describe what A does geometrically. Draw a picture.

Supplemental Problems

These are additional practice problems after completing the worksheet.

1. Let A and B be 3×3 real matrices. Answer yes / no / maybe:
a) If A and B have the same eigenvalues, then A is similar to B.
b) If A and B both have eigenvalues $-1,0,1$, then A is similar to B.
c) If A is diagonalizable and invertible, then A^{-1} is diagonalizable.
2. Give an example of a non-diagonal 2×2 matrix which is diagonalizable but not invertible. Justify your answer.
3. Suppose A is a 7×7 matrix with four distinct eigenvalues. One eigenspace has dimension 2, while another eigenspace has dimension 3. Is it possible that A is not diagonalizable?
4. Let $A=\left(\begin{array}{rrr}4 & -3 & 3 \\ 3 & 4 & -2 \\ 0 & 0 & 2\end{array}\right)$.
a) Find all (complex) eigenvalues and eigenvectors of A.
b) Write $A=P C P^{-1}$, where C is a block diagonal matrix, as in the slides near the end of section 5.5.
c) What does A do geometrically? Draw a picture.
