Math 1553 Worksheet §§7.2–7.5

1. a) Find the standard matrix *A* for proj_W , where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \right\}$.

b) Find the standard matrix *B* for
$$\operatorname{proj}_L$$
, where $L = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.

- c) Answer the following questions without doing any calculations:(1) What are A² and B²?
 - (2) What are A^{-1} and B^{-1} ?
 - (3) What are *AB* and *BA*?
 - (4) Is A or B diagonalizable?
 - (5) What are the eigenvalues of *A* and *B*? What are their algebraic multiplicities?
 - (6) Is A similar to B?

2. a) Find the distance from
$$e_1$$
 to $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.

b) Find the least squares solution
$$\hat{x}$$
 to $Ax = e_1$, where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$.

3. Let
$$A = \begin{pmatrix} 1 & 6 & 4 \\ -1 & -2 & 20 \\ 1 & 2 & -14 \\ 1 & 6 & 10 \end{pmatrix}$$
.

a) Find an orthogonal basis for Col*A*.

b) Find an orthonormal basis for Col*A*.

c) Find a *QR* decomposition for *A*.

4. Consider the four points (0,0), (1,8), (3,8), and (4,20).
a) Find the best fit line y = Ax + B through these points.

b) Find the best fit parabola $y = Ax^2 + Bx + C$ through these points.

c) Find the best fit cubic $y = Ax^3 + Bx^2 + Cx + D$ through these points.