Problem 1-4 Given f(x) = x - 4 and $g(x) = x^2 - 2x - 8$ 1. (f + g)(x)2. (f - g)(x)3. $(f \cdot g)(x)$ 4. $(\frac{f}{g})(x)$

1. (f+g)(x)

To find (f+g)(x), we add the functions f(x) and g(x):

$$(f+g)(x) = f(x) + g(x)$$

Substitute f(x) and g(x):

$$(f+g)(x) = (x-4) + (x^2 - 2x - 8)$$

Combine like terms:

$$(f+g)(x) = x^2 - x - 12$$

2. (f-g)(x)

To find (f - g)(x), we subtract the function g(x) from f(x):

$$(f-g)(x) = f(x) - g(x)$$

Substitute f(x) and g(x):

$$(f-g)(x) = (x-4) - (x^2 - 2x - 8)$$

Distribute the negative sign and combine like terms:

$$(f-g)(x) = x - 4 - x^2 + 2x + 8$$

$$(f-g)(x) = -x^2 + 3x + 4$$

3. $(f \cdot g)(x)$

To find $(f \cdot g)(x)$, we multiply the functions f(x) and g(x):

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Substitute f(x) and g(x):

$$(f \cdot g)(x) = (x - 4)(x^2 - 2x - 8)$$

Expand and simplify:

$$(f \cdot g)(x) = x(x^2 - 2x - 8) - 4(x^2 - 2x - 8)$$
$$(f \cdot g)(x) = x^3 - 2x^2 - 8x - 4x^2 + 8x + 32$$

Combine like terms:

$$(f \cdot g)(x) = x^3 - 6x^2 + 32$$

4. $\left(\frac{f}{g}\right)(x)$ To find $\left(\frac{f}{g}\right)(x)$, we divide the function f(x) by g(x):

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Substitute f(x) and g(x):

$$\left(\frac{f}{g}\right)(x) = \frac{x-4}{x^2 - 2x - 8}$$

The simplified form is:

$$\left(\frac{f}{g}\right)(x) = \frac{x-4}{(x-4)(x+2)}$$

$$\left(\frac{f}{g}\right)(x) = \frac{1}{x+2}, \quad \text{for} \quad x \neq 4$$

Problem 5-8 Given f(x) = 3x and g(x) = -x5. (f + g)(-1)6. (f - g)(0)7. $(f \cdot g)(2)$ 8. $(\frac{f}{g})(1)$

5. (f+g)(-1)

To find (f+g)(-1), we first find (f+g)(x):

$$(f+g)(x) = f(x) + g(x)$$

Substitute f(x) and g(x):

$$(f+g)(x) = 3x + (-x) = 2x$$

Now, evaluate at x = -1:

$$(f+g)(-1) = 2(-1) = -2$$

6. (f-g)(0)

To find (f - g)(0), we first find (f - g)(x):

$$(f-g)(x) = f(x) - g(x)$$

Substitute f(x) and g(x):

$$(f-g)(x) = 3x - (-x) = 3x + x = 4x$$

Now, evaluate at x = 0:

$$(f-g)(0) = 4(0) = 0$$

7. $(f \cdot g)(2)$

To find $(f \cdot g)(2)$, we first find $(f \cdot g)(x)$:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Substitute f(x) and g(x):

$$(f \cdot g)(x) = (3x)(-x) = -3x^2$$

Now, evaluate at x = 2:

$$(f \cdot g)(2) = -3(2)^2 = -3(4) = -12$$

8. $\left(\frac{f}{g}\right)(1)$ To find $\left(\frac{f}{g}\right)(1)$, we first find $\left(\frac{f}{g}\right)(x)$: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Substitute f(x) and g(x):

$$\left(\frac{f}{g}\right)(x) = \frac{3x}{-x} = -3$$

Now, evaluate at x = 1:

$$\left(\frac{f}{g}\right)(1) = -3$$

Problem 9-12 Given f(x) = 4x + 2 and $g(x) = -x^2 + 2$ 9. (f + g)(1)10. (f - g)(2)11. $(f \cdot g)(-3)$ 12. $(\frac{f}{g})(1)$

9. (f+g)(1)

To find (f+g)(1), we first find (f+g)(x):

$$(f+g)(x) = f(x) + g(x)$$

Substitute f(x) and g(x):

$$(f+g)(x) = (4x+2) + (-x^2+2) = -x^2 + 4x + 4$$

Now, evaluate at x = 1:

$$(f+g)(1) = -(1)^2 + 4(1) + 4 = -1 + 4 + 4 = 7$$

10. (f-g)(2)

To find (f - g)(2), we first find (f - g)(x):

$$(f-g)(x) = f(x) - g(x)$$

Substitute f(x) and g(x):

$$(f-g)(x) = (4x+2) - (-x^2+2) = 4x + 2 + x^2 - 2 = x^2 + 4x$$

Now, evaluate at x = 2:

$$(f-g)(2) = (2)^2 + 4(2) = 4 + 8 = 12$$

11. $(f \cdot g)(-3)$

To find $(f \cdot g)(-3)$, we first find $(f \cdot g)(x)$:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

Substitute f(x) and g(x):

$$(f \cdot g)(x) = (4x+2)(-x^2+2)$$

Expand and simplify:

$$(f \cdot g)(x) = 4x(-x^2) + 4x(2) + 2(-x^2) + 2(2)$$
$$(f \cdot g)(x) = -4x^3 + 8x - 2x^2 + 4$$

Now, evaluate at x = -3:

$$(f \cdot g)(-3) = -4(-3)^3 + 8(-3) - 2(-3)^2 + 4$$
$$(f \cdot g)(-3) = -4(-27) - 24 - 2(9) + 4$$
$$(f \cdot g)(-3) = 108 - 24 - 18 + 4 = 70$$

12.
$$\left(\frac{f}{g}\right)(1)$$

To find $\left(\frac{f}{g}\right)(1)$, we first find $\left(\frac{f}{g}\right)(x)$:
 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Substitute f(x) and g(x):

$$\left(\frac{f}{g}\right)(x) = \frac{4x+2}{-x^2+2}$$

Now, evaluate at x = 1:

$$\left(\frac{f}{g}\right)(1) = \frac{4(1)+2}{-(1)^2+2} = \frac{4+2}{-1+2} = \frac{6}{1} = 6$$

Problem 13

Given f(x) = 2x + 1 and $g(x) = 2x^2 - 3$, find $(f \circ g)(x)$

Step 1: Substitute g(x) into f(x)

To find f(g(x)), we substitute g(x) into f(x):

$$f(g(x)) = f(2x^2 - 3)$$

Step 2: Evaluate $f(2x^2 - 3)$

Now we evaluate $f(2x^2 - 3)$ using the definition of f(x):

$$f(x) = 2x + 1$$

So, substituting $2x^2 - 3$ for x in f(x), we get:

$$f(2x^2 - 3) = 2(2x^2 - 3) + 1$$

Step 3: Simplify the Expression

Next, we simplify the expression:

$$f(2x^{2} - 3) = 2 \cdot 2x^{2} - 2 \cdot 3 + 1$$
$$f(2x^{2} - 3) = 4x^{2} - 6 + 1$$
$$f(2x^{2} - 3) = 4x^{2} - 5$$

Conclusion

Therefore, the composition of the functions f and g, $(f \circ g)(x)$, is:

$$(f \circ g)(x) = 4x^2 - 5$$

Problem 14

Given f(x) = 2x + 1 and $g(x) = 2x^2 - 3$, find $(g \circ f)(x)$

Step 1: Substitute f(x) into g(x)

To find g(f(x)), we substitute f(x) into g(x):

$$g(f(x)) = g(2x+1)$$

Step 2: Evaluate g(2x+1)

Now we evaluate g(2x + 1) using the definition of g(x):

$$g(x) = 2x^2 - 3$$

So, substituting 2x + 1 for x in g(x), we get:

$$g(2x+1) = 2(2x+1)^2 - 3$$

Step 3: Simplify the Expression

Next, we simplify the expression:

$$g(2x+1) = 2(2x+1)^2 - 3$$

First, expand $(2x+1)^2$:

$$(2x+1)^2 = (2x+1)(2x+1) = 4x^2 + 4x + 1$$

Then, multiply by 2:

$$2(4x^2 + 4x + 1) = 8x^2 + 8x + 2$$

Finally, subtract 3:

$$8x^2 + 8x + 2 - 3 = 8x^2 + 8x - 1$$

Conclusion

Therefore, the composition of the functions g and f, $(g \circ f)(x)$, is:

$$(g \circ f)(x) = 8x^2 + 8x - 1$$

Problem 15

Given $f(x) = x^2 + 2$ and g(x) = 1 - 2x. Find the average rate of change of the composite function $f \circ g$ as x changes from a = 1 to b = 2.

Step 1: Find the Composite Function $(f \circ g)(x)$

To find $(f \circ g)(x)$, we substitute g(x) into f(x):

$$(f \circ g)(x) = f(g(x))$$

Substitute g(x) = 1 - 2x into $f(x) = x^2 + 2$:

$$(f \circ g)(x) = f(1 - 2x) = (1 - 2x)^2 + 2$$

Step 2: Simplify the Composite Function

Simplify $(1 - 2x)^2 + 2$:

$$(1 - 2x)^2 = 1 - 4x + 4x^2$$
$$(f \circ g)(x) = 1 - 4x + 4x^2 + 2 = 4x^2 - 4x + 3$$

Step 3: Evaluate the Composite Function at x = 1 and x = 2

Evaluate $(f \circ g)(1)$:

$$(f \circ g)(1) = 4(1)^2 - 4(1) + 3 = 4 - 4 + 3 = 3$$

Evaluate $(f \circ g)(2)$:

$$(f \circ g)(2) = 4(2)^2 - 4(2) + 3 = 16 - 8 + 3 = 11$$

Step 4: Find the Average Rate of Change

The average rate of change of $(f \circ g)(x)$ from x = 1 to x = 2 is given by:

Average Rate of Change =
$$\frac{(f \circ g)(b) - (f \circ g)(a)}{b - a}$$
Substitute $a = 1, b = 2, (f \circ g)(1) = 3, \text{ and } (f \circ g)(2) = 11$:
Average Rate of Change =
$$\frac{11 - 3}{2 - 1} = \frac{8}{1} = 8$$

Conclusion

Therefore, the average rate of change of the composite function $(f \circ g)(x)$ as x changes from a = 1 to b = 2 is:

8

Problem 16 Given $f(x) = x^2 - 3$ and g(x) = 3x - 4. Find the average rate of change of the composite function $g \circ f$ as x changes from a = -3 to b = 4.

Step 1: Find the Composite Function $g \circ f$

The composite function $g \circ f$ is defined as:

$$(g \circ f)(x) = g(f(x))$$

First, find f(x):

$$f(x) = x^2 - 3$$

Next, substitute f(x) into g:

$$(g \circ f)(x) = g(f(x)) = g(x^2 - 3)$$

Now, apply the function g to $x^2 - 3$:

$$g(x^{2} - 3) = 3(x^{2} - 3) - 4 = 3x^{2} - 9 - 4 = 3x^{2} - 13$$

So, the composite function is:

$$(g \circ f)(x) = 3x^2 - 13$$

Step 2: Find the Values of $(g \circ f)(a)$ and $(g \circ f)(b)$

Evaluate the composite function at a = -3 and b = 4:

$$(g \circ f)(-3) = 3(-3)^2 - 13 = 3(9) - 13 = 27 - 13 = 14$$

$$(g \circ f)(4) = 3(4)^2 - 13 = 3(16) - 13 = 48 - 13 = 35$$

Step 3: Calculate the Average Rate of Change

The average rate of change of the function $g \circ f$ from x = a to x = b is given by:

$$\frac{(g \circ f)(b) - (g \circ f)(a)}{b - a}$$

Substitute the values found in Step 2:

$$\frac{(g \circ f)(4) - (g \circ f)(-3)}{4 - (-3)} = \frac{35 - 14}{4 - (-3)} = \frac{21}{4 + 3} = \frac{21}{7} = 3$$

Conclusion

The average rate of change of the composite function $g \circ f$ as x changes from a = -3 to b = 4 is:

3

Problem 17

True or False: $(f \circ g)(x)$ is always equal to $(g \circ f)(x)$

False, they can be equal, but not always as it depends on what f and g are as functions.

Secret Phrase

What was the secret phrase you found?

TO HELL WITH GEORGIA