Name:
 Date:

Instructions: Please complete the following problems. Each answer is associated with a letter that creates a secret phrase. You can find the key on the last page.

For problems 1-4, use f(x) = x - 4 and $g(x) = x^2 - 2x - 8$

Problem 1. Find (f + q)(x)**Problem 2.** Find (f - q)(x)**Problem 3.** Find $(f \cdot q)(x)$ **Problem 4.** Find $(\frac{f}{a})(x)$ For problems 5-8, use f(x) = 3x and q(x) = -x**Problem 5.** Find (f + g)(-1)**Problem 6.** Find (f - q)(0)**Problem 7.** Find $(f \cdot q)(2)$ **Problem 8.** Find $\left(\frac{f}{a}\right)(1)$ For problems 9-12, use f(x) = 4x + 2 and $q(x) = -x^2 + 2$ **Problem 9.** Find (f + g)(1)**Problem 10.** Find (f - q)(2)**Problem 11.** Find $(f \cdot g)(-3)$ **Problem 12.** Find $\left(\frac{f}{a}\right)(1)$ **Problem 13.** Given f(x) = 2x + 1 and $g(x) = 2x^2 - 3$, find $(f \circ g)(x)$

Problem 14. Given f(x) = 2x + 1 and $g(x) = 2x^2 - 3$, find $(g \circ f)(x)$

Problem 15. Given $f(x) = x^2 + 2$ and g(x) = 1 - 2x. Find the average rate of change of the composite function $f \circ g$ as x changes from a = 1 to b = 2.

Problem 16. Given $f(x) = x^2 - 3$ and g(x) = 3x - 4. Find the average rate of change of the composite function $g \circ f$ as x changes from a = -3 to b = 4.

Problem 17. True or False: $(f \circ g)(x)$ is always equal to $(g \circ f)(x)$

A	False
В	$x^2 - 9x + 11$
C	composite functions
D	plug f into g
E	$\frac{1}{x+2}$
E	$\frac{\frac{1}{x+2}}{6}$
F	yes 8
G	8
G	70
Η	$x^3 - 6x^2 + 32$
Η	12
Ι	-3
Ι	3
J	-80
K	True
L	-2
L	0
Μ	plug g into f
N	38
0	$ \begin{array}{r} -x^2 + 3x + 4 \\ \hline 4x^2 - 5 \\ \hline x^5 - x^4 + 12 \end{array} $
0	$4x^2 - 5$
Р	$x^5 - x^4 + 12$
Q R	always
R	$8x^2 + 8x - 1$
S T T	polynomial
Т	$x^2 - x - 12$
Т	7
U	maybe
V	
W	-12
X	$\frac{1}{x}$
Y	combining functions
Ζ	no

What was the phrase you found? (Hint: 4 words)