Problem 1

Convert to logarithmic form: $8^2 = 64$

 $\log_8(64) = 2$

Problem 2

Convert to exponential form: $\log_3(\frac{1}{9}) = -2$

 $3^{-2} = \frac{1}{9}$

Problem 3

Evaluate: $\log_4 \frac{1}{64}$

 $y = \log_4 \frac{1}{64}$ $4^y = \frac{1}{64}$ y = -3

Problem 4

Evaluate: $\ln e$

 $y = \ln e$ $e^y = e$ y = 1

Problem 5

Evaluate: $\log_{\frac{1}{3}} 9$

 $y = \log_{\frac{1}{3}} 9$ $(\frac{1}{3})^y = 9$ y = -2

Problem 6

Evaluate: $\log_7 \sqrt{7}$

$$y = \log_7 \sqrt{7}$$
$$7^y = \sqrt{7}$$
$$y = \frac{1}{2}$$

Problem 7

Evaluate: log 100

$$y = \log_{10} 100$$
$$10^y = 100$$
$$y = 2$$

Problem 8

Evaluate: $\log_2(-2)$

By observation, -2 is not in the domain of the logarithm, and therefore this is undefined.

Problem 9

The inverse of the exponential function is the $_$

logarithmic function

Problem 10

What is the domain and range of $y = \log_a x$?

domain: $(0,\infty)$, range: $(-\infty,\infty)$

Problem 11

What is the domain of $f(x) = \log_5(x-7)$

 $\begin{aligned} x - 7 &> 0 \\ x &> 7 \end{aligned}$

Domain:
$$(7, \infty)$$

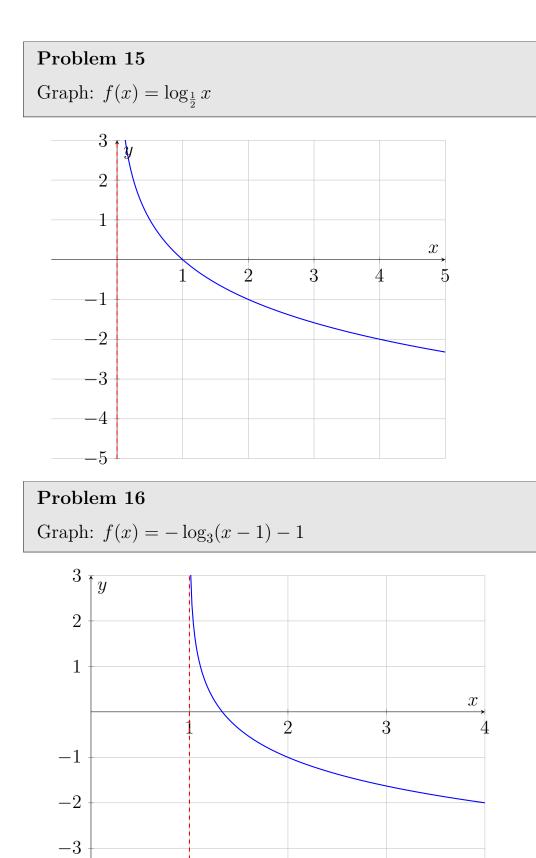
Problem 12

Solve: $\log_5 1 = y$

$$5^y = 1$$
$$y = 0$$

Problem 13 Solve: $\log_5(x+4) = 2$

 $5^2 = x + 4$ x = 21


Problem 14

Write the equation of the graph $y = \ln(x)$ reflected across the x-axis and translated left 2, and up 4.

$$y = -\ln(x+2) + 4$$

Graphing Problems:

-4

