Name: _____ Date: _____

Instructions: Please complete the following problems. Answers are each associated with a letter that creates a secret word. You can find the key on the last page.

Problem 1. State the product, quotient, and power rules of logarithms

Problem 2. Evaluate: $\log_2(\frac{1}{2}\sqrt{x}y^2)$, given $\log_2(x) = 6$ and $\log_2(y) = 4$

Problem 3. Evaluate: $\log_2(x^{\frac{1}{25}}y^{\frac{1}{25}})$, given $\log_2(x) = 6$ and $\log_2(y) = 4$

Problem 4. Write in expanded form: $f(x) = \log_2\left[\frac{(x-1)(x+1)}{x^2-4}\right]$

Problem 5. Write in condensed form: $f(x) = 2\ln(x) + \frac{1}{2}\ln(x^2 - 1) - \frac{1}{2}\ln(x^2 + 1)$

Problem 6. Write in expanded form: $f(x) = \ln \left[\frac{a^2(b+1)}{c\sqrt{d}} \right]$

Problem 7. Write in condensed form: $f(x) = 2\log(a) + \frac{1}{2}\log(b) - \frac{1}{3}\log(c) - 5\log d$

A	10
В	Yes
С	$\frac{2}{5}$
D	$\log(x)$
Е	$\ln\left[\frac{x^2\sqrt{x^2-1}}{\sqrt{x^2+1}}\right]$
F	$\ln e$
G	$\frac{1}{3}$
Η	5
Ι	$\log a + \log b$
J	$\log_a(MN) = \log_a M + \log_a N, \log_a(\frac{M}{N}) = \log_a M - \log_a N, \log_a M^r = r \log_a M$
K	$\log_2(x-1) + \log_2(x+1) - \log_2(x-2) - \log_2(x+2)$
L	False
Μ	$\ln a^2 + \ln(b+1) - \ln c + \frac{1}{2} \ln d$
N	$\log(a^2\sqrt{b}\cdot d^5\sqrt[3]{c})$
0	$\log a - \log b$
Р	0
Q	exponential functions
R	15
S	$\log\left[\frac{a^2\sqrt{b}}{d^5\sqrt[3]{c}}\right]$
Т	$2\ln a + \ln(b+1) - \ln c - \frac{1}{2}\ln d$
U	inverses
V	no solution
W	No
X	$\log_a(MN) = \log_a M - \log_a N, \log_a(\frac{M}{N}) = \log_a M + \log_a N, \log_a M^r = r^2 \log_a M$
Y	logarithmic functions
Ζ	True

What was the word you found?