Problem 1

What is the period of the sin and cos function?

The period for both functions is 2π .

Problem 2

Determine the amplitude of $y = -6\sin(x)$

Use the equation $y = a \sin [b(x - c) + d]$, where the amplitude is |a| = a. The amplitude is |-6| = 6.

Problem 3

What is the phase shift of $y = \cos(2x - \pi)$?

First, put the function into the equation form of $y = a \sin [b(x - c) + d]$, where c is the phase shift.

$$y = \cos\left(2\left(x - \frac{\pi}{2}\right)\right)$$

Then, the phase shift is $\frac{\pi}{2}$ to the right.

Problem 4

What is the phase shift of $y = \sin\left(\frac{1}{6}x\right)$?

Phase shift is 0 since there is no c value in this function.

Problem 5

What is the vertical shift of $y = \sin(x - \frac{\pi}{2}) + 7$?

Use the equation $y = a \sin [b(x - c) + d]$, where d is the vertical shift. The vertical shift is up 7.

Problem 6 Graph $y = \sin\left(\frac{1}{2}x\right)$

Step 1:

Amplitude =
$$|1| = 1$$

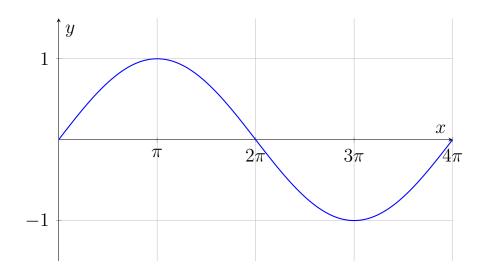
Period = $\frac{2\pi}{b} = \frac{2\pi}{\frac{1}{2}} = 4\pi$
Phase shift = 0

Vertical shift = 0

Step 2: Find the domain of 1 cycle using $[c, c + \frac{2\pi}{b}]$.

 $[0, 0 + 4\pi]$ $[0, 4\pi]$

Step 3: Determine the key points,


$$\frac{1}{4}(4\pi) = \pi$$

 $0, \quad 0 + \pi = \pi, \quad \pi + \pi = 2\pi, \quad 2\pi + \pi = 3\pi, \quad 3\pi + \pi = 4\pi$

Key points : $0,\pi,2\pi,3\pi,4\pi$

Step 4: X/Y chart and graph \rightarrow

Duch	I • I
X	Y
0	0
π	1
2π	0
3π	-1
4π	0

Problem 7 Graph $y = -\cos(x)$

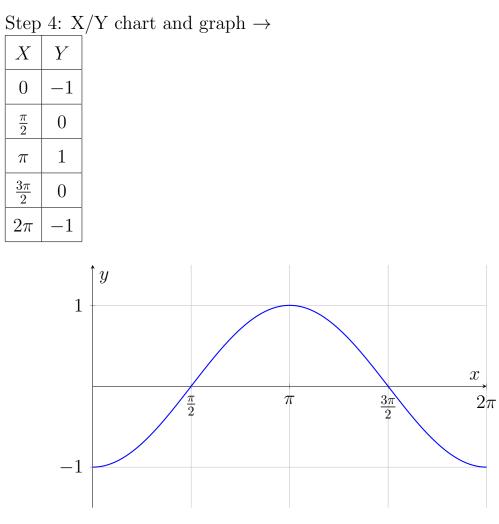
Step 1:

Amplitude =
$$|-1| = 1$$

Period = $\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$
Phase shift = 0

Vertical shift
$$= 0$$

Step 2: Find the domain of 1 cycle using $[c, c + \frac{2\pi}{b}]$.


 $[0, 0 + 2\pi]$ $[0, 2\pi]$

Step 3: Determine the key points,

$$\frac{1}{4}(2\pi) = \frac{\pi}{2}$$

$$0 + \frac{\pi}{2} = \frac{\pi}{2},$$

$$\frac{\pi}{2} + \frac{\pi}{2} = \pi,$$

$$\pi + \frac{\pi}{2} = \frac{3\pi}{2},$$

$$\frac{3\pi}{2} + \frac{\pi}{2} = \frac{4\pi}{2} = 2\pi.$$

Key points : $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$

Problem 8 Graph $f(x) = -5\sin\left(x - \frac{\pi}{3}\right)$

Step 1:

Amplitude = |-5| = 5

Period
$$=$$
 $\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$
Phase shift $= \frac{\pi}{3}$ (to the right)
Vertical shift $= 0$

Step 2: Find the domain of 1 cycle using $[c, c + \frac{2\pi}{b}]$.

$$\frac{[\frac{\pi}{3}, \frac{\pi}{3} + 2\pi]}{[\frac{\pi}{3}, \frac{7\pi}{3}]}$$

Step 3: Determine the key points,

$$\frac{1}{4}(2\pi) = \frac{\pi}{2}$$

$$\frac{\pi}{3} + \frac{\pi}{2} = \frac{5\pi}{6},$$

$$\frac{5\pi}{6} + \frac{\pi}{2} = \frac{8\pi}{6},$$


$$\frac{8\pi}{6} + \frac{\pi}{2} = \frac{11\pi}{6},$$

$$\frac{11\pi}{6} + \frac{\pi}{2} = \frac{14\pi}{6} = \frac{7\pi}{3}.$$

Key points :
$$\frac{\pi}{3}, \frac{5\pi}{6}, \frac{8\pi}{6}, \frac{11\pi}{6}, \frac{14\pi}{6}$$

Step 4: X/Y chart and graph \rightarrow

X	Y
$\frac{\pi}{3}$	0
$\frac{5\pi}{6}$	-5
$\frac{4\pi}{3}$	0
$\frac{11\pi}{6}$	5
$\frac{7\pi}{3}$	0

Step 1:

First put the equation into the form of $y = a \sin [b(x - c) + d]$

$$2\cos\left(3\left(x+\frac{\pi}{6}\right)\right) - 1$$

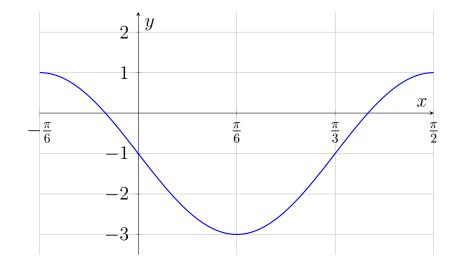
Amplitude = $|2| = 2$
Period = $\frac{2\pi}{b} = \frac{2\pi}{3}$
Phase shift = $-\frac{\pi}{6}$ (to the left)
Vertical shift = -1 (down)

Step 2: Find the domain of 1 cycle using $[c, c + \frac{2\pi}{b}]$.

$$[-\frac{\pi}{6}, -\frac{\pi}{6} + \frac{2\pi}{3}]$$

 $[-\frac{\pi}{6}, \frac{\pi}{2}]$

Step 3: Determine the key points,


$$\frac{1}{4}(\frac{2\pi}{3}) = \frac{\pi}{6}$$

$$-\frac{\pi}{6} + \frac{\pi}{6} = 0,$$

$$0 + \frac{\pi}{6} = \frac{\pi}{6},$$

$$\frac{\pi}{6} + \frac{\pi}{6} = \frac{2\pi}{6},$$

$$\frac{2\pi}{6} + \frac{\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}$$

Key points :
$$-\frac{\pi}{6}, 0, \frac{\pi}{6}, \frac{2\pi}{6}, \frac{3\pi}{6}$$

Step 4: X/Y chart and graph \rightarrow

o cop	
X	Y
$\frac{-\pi}{6}$	1
0	-1
$\frac{\pi}{6}$	-3
$\frac{\pi}{3}$	-1
$\frac{\pi}{2}$	1

