What is the period of the sec and csc functions?

The period for both functions is 2π .

Problem 2

What is the period of cot?

The period of cot is π .

Problem 3

What is the domain of cot?

The domain of cot is all real numbers except $sin(x) = 0, x \neq n\pi$

Problem 4

Find the LVA and RVA of $y = \tan(x - \frac{\pi}{4})$

To find LVA \rightarrow

Use LVA equation:
$$b(x-c) = -\frac{\pi}{2}$$

 $x - \frac{\pi}{4} = -\frac{\pi}{2}$
 $x = -\frac{\pi}{2} + \frac{\pi}{4}$
 $x = -\frac{2\pi}{4} + \frac{\pi}{4}$
LVA is $x = -\frac{\pi}{4}$

To find RVA \rightarrow

Use RVA equation:
$$b(x - c) = \frac{\pi}{2}$$

 $x - \frac{\pi}{4} = \frac{\pi}{2}$
 $x = \frac{\pi}{2} + \frac{\pi}{4}$
 $x = \frac{2\pi}{4} + \frac{\pi}{4}$
RVA is $x = \frac{3\pi}{4}$

Find the LVA and RVA of $y = \tan(2x - \frac{\pi}{4}) - 3$

To find LVA \rightarrow

Use LVA equation: inside stuff = $-\frac{\pi}{2}$

$$2x - \frac{\pi}{4} = -\frac{\pi}{2}$$
$$2x = -\frac{\pi}{2} + \frac{\pi}{4}$$
$$2x = -\frac{\pi}{4}$$
$$\text{LVA is } x = -\frac{\pi}{8}$$

To find RVA \rightarrow

Use RVA equation: inside stuff $=\frac{\pi}{2}$

$$2x - \frac{\pi}{4} = \frac{\pi}{2}$$
$$2x = \frac{\pi}{2} + \frac{\pi}{4}$$
$$2x = \frac{3\pi}{4}$$
RVA is $x = \frac{3\pi}{8}$

Problem 6

Graph $y = 3\tan(x - \frac{\pi}{3}) + 2$

Step 1:

Vertical stretch =
$$|a| = |3| = 3$$

Period = $\frac{\pi}{b} = \pi$

Phase shift
$$=\frac{\pi}{3}$$
 (to the right)
Vertical shift $= 2$ (up)

Step 2:

To find LVA \rightarrow Use LVA equation: inside stuff $= -\frac{\pi}{2}$

$$x - \frac{\pi}{3} = -\frac{\pi}{2}$$
$$x = -\frac{\pi}{2} + \frac{\pi}{3}$$
$$x = -\frac{3\pi}{6} + \frac{2\pi}{6}$$
$$x = -\frac{\pi}{6}$$

To find RVA \rightarrow Use RVA equation: inside stuff $= \frac{\pi}{2}$

$$x - \frac{\pi}{3} = \frac{\pi}{2}$$
$$x = \frac{\pi}{2} + \frac{\pi}{3}$$
$$x = \frac{3\pi}{6} + \frac{2\pi}{6}$$
$$x = \frac{5\pi}{6}$$

Step 3: Find key points \rightarrow First, find $\frac{1}{4}$ (period) = $\frac{1}{4}\pi = \frac{\pi}{4} = \#$. Then, start with the LVA and keep adding, #, until you get to the RVA [remember your domain of 1 cycle is: $\left(-\frac{\pi}{6}, \frac{5\pi}{6}\right)$] to determine key points.

$$-\frac{\pi}{6} + \frac{\pi}{4} = \frac{\pi}{12} + \frac{\pi}{4} = \frac{4\pi}{12} + \frac{\pi}{4} = \frac{7\pi}{12} + \frac{\pi}{4} = \frac{10\pi}{12}$$

Key points:

$$-\frac{\pi}{6}, \quad \frac{\pi}{12}, \quad \frac{4\pi}{12}, \quad \frac{7\pi}{12}, \quad \frac{10\pi}{12}$$

Step 4: X/Y chart and graph \rightarrow

Graph $y = \tan(2x + \pi)$

Step 1:

First put the function into the form $y = a \tan(b(x-c)) + d \rightarrow d$

$$y = \tan\left(2\left(x + \frac{\pi}{2}\right)\right)$$

Vertical stretch = $|1| = 1$
Period = $\frac{\pi}{b} = \frac{\pi}{2}$

Phase shift
$$= -\frac{\pi}{2}$$
 (to the left)
Vertical shift $= 0$

Step 2:

To find LVA
$$\rightarrow$$
 Use LVA equation: $b(x - c) = -\frac{\pi}{2}$
 $2(x + \frac{\pi}{2}) = -\frac{\pi}{2}$
 $x + \frac{\pi}{2} = -\frac{\pi}{4}$
 $x = -\frac{\pi}{4} - \frac{2\pi}{4}$
 $x = -\frac{3\pi}{4}$

To find RVA \rightarrow Use RVA equation: $b(x - c) = \frac{\pi}{2}$

$$2(x + \frac{\pi}{2}) = \frac{\pi}{2}$$
$$x + \frac{\pi}{2} = \frac{\pi}{4}$$
$$x = \frac{\pi}{4} - \frac{2\pi}{4}$$
$$x = -\frac{\pi}{4}$$

Step 3: Find key points \rightarrow First, find $\frac{1}{4}(\text{period}) = \frac{1}{4}(\frac{\pi}{2}) = \frac{\pi}{8} = \#$. Then, start with the LVA and keep adding, #, until you get to the RVA [remember your domain of 1 cycle is: $(-\frac{3\pi}{4}, -\frac{\pi}{4})$] to determine key points.

$$-\frac{3\pi}{4} + \frac{\pi}{8} = -\frac{5\pi}{8} + \frac{\pi}{8} = -\frac{4\pi}{8} + \frac{\pi}{8} = -\frac{3\pi}{8} + \frac{\pi}{8} = -\frac{2\pi}{8} = -\frac{\pi}{4}$$

Key Points:

$$-\frac{3\pi}{4}, -\frac{5\pi}{8}, -\frac{4\pi}{8}, -\frac{3\pi}{8}, -\frac{2\pi}{8}$$

Step 4: X/Y chart and graph \rightarrow

True or False: The non-vertical line makes an angle θ with the positive

x - axis, then the slope of the line is given by $m = \tan \theta$.

True!

Problem 9

True or False: The zeros of tan(x) are all integer multiples of π

True!

True or False: The domain of $\tan(x)$ is all real numbers except multiples of π

False! The domain of tan(x) is all real numbers except odd multiples of $\frac{\pi}{2}$

Problem 11

What is the range of the $y = \csc(x)$ and $y = \sec(x)$ function?

 $(-\infty, -1] \cup [1, \infty)$

Problem 12

What are the x-intercepts of $y = \csc(x)$ and $y = \sec(x)$ function?

There are no x-intercepts!