Name: ______ Date: _____

Instructions: Please complete the following problems for practice. Each answer is associated with a letter that creates a secret name. You can find the key on the last page.

Problem 1. Find the exact value of: $cos(105^{\circ}) sin(75^{\circ})$

Problem 2. Find $\sin(32^\circ) - \sin(16^\circ)$

Problem 3. Use the sum-to-product to rewrite the expression: $\sin 10^{\circ} + \sin 6^{\circ}$

Problem 4. Evaluate: $\sin(67.5^{\circ})\cos(22.5^{\circ})$

Problem 5. Find the exact value of $\sin(195^{\circ}) \cdot \cos(45^{\circ})$

Problem 6. True or False: $\sin x + \sin y = \sin(x+y)$

Problem 7. Fill in the blank: cos(3x) + cos(5x) =

100
$-\frac{1}{4}$
$\cos(8x)$
$\frac{1}{2} + \frac{\sqrt{2}}{4}$
$\frac{-\sqrt{3}+1}{4}$
$\sin(16^\circ)$
$\cos(90^{\circ})$
$\frac{1}{2}$
True
$\frac{1}{28}$
10
False
$2\cos(4x)\cos(x)$
$2\cos(8x)\cos(16x)$
$2\cos(4x)\sin(x)$
$\frac{2}{3}$
$\frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$
$\frac{-1}{2}$
$2\sin(8^\circ)\cos(2^\circ)$
1
$\frac{\sqrt{6}+\sqrt{2}}{4}$
$2\sin(8^\circ)\cos(24^\circ)$
$\cos(x)$
$\sin(x)$
$\frac{5}{13}$
$\frac{4}{13}$
$\frac{12}{12}$

What was the name found?