
Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example
Ak, for large k.

But: multiplying two n× n matrices requires roughly n3 computations. Is
there a more efficient way to compute Ak?
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Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices

2. Diagonalizing matrices

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.

2. Apply diagonalization to compute matrix powers.
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Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the
main diagonal.

The following are all diagonal matrices.[
2 0
0 2

]
,
[
2
]
, In,

[
0 0
0 0

]
We’ll only be working with diagonal square matrices in this course.
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Powers of Diagonal Matrices

If A is diagonal, then Ak is easy to compute. For example,

A =

(
3 0
0 0.5

)

A2 =

Ak =

But what if A is not diagonal?
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Diagonalization

Suppose A ∈ Rn×n. We say that A is diagonalizable if it is similar to a
diagonal matrix, D. That is, we can write

A = PDP−1
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Diagonalization

If A is diagonalizable ⇔ A has n linearly independent eigenvectors.

Theorem

Note: the symbol ⇔ means “ if and only if ”.

Also note that A = PDP−1 if and only if

A = [~v1 ~v2 · · ·~vn]


λ1

λ2
. . .

λn

 [~v1 ~v2 · · ·~vn]−1

where ~v1, . . . , ~vn are linearly independent eigenvectors, and λ1, . . . , λn
are the corresponding eigenvalues (in order).
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Example 1

Diagonalize if possible. (
2 6
0 −1

)
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Example 2

Diagonalize if possible. (
3 1
0 3

)
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Distinct Eigenvalues

If A is n × n and has n distinct eigenvalues, then A is
diagonalizable.

Theorem

Why does this theorem hold?

Is it necessary for an n× n matrix to have n distinct eigenvalues for it to
be diagonalizable?
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Non-Distinct Eigenvalues

Theorem. Suppose

• A is n× n
• A has distinct eigenvalues λ1, . . . , λk, k ≤ n
• ai = algebraic multiplicity of λi

• di = dimension of λi eigenspace (“geometric multiplicity”)

Then

1. di ≤ ai for all i

2. A is diagonalizable ⇔ Σdi = n ⇔ di = ai for all i

3. A is diagonalizable ⇔ the eigenvectors, for all eigenvalues, together
form a basis for Rn.
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Example 3

The eigenvalues of A are λ = 3, 1. If possible, construct P and D such
that AP = PD.

A =

 7 4 16
2 5 8
−2 −2 −5
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Additional Example (if time permits)

Note that

~xk =

[
0 1
1 1

]
~xk−1, ~x0 =

[
1
1

]
, k = 1, 2, 3, . . .

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the nth

number in this sequence.
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Basis of Eigenvectors

Express the vector ~x0 =

[
4
5

]
as a linear combination of the vectors

~v1 =

[
1
1

]
and ~v2 =

[
1
−1

]
and find the coordinates of ~x0 in the basis

B = {~v1, ~v0}.

[~x0]B =

Let P = [~v1 ~v2] and D =

[
1 0
0 −1

]
, and find [Ak~x0]B where

A = PDP−1, for k = 1, 2, . . ..

[Ak~x0]B =
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Basis of Eigenvectors - part 2

Let ~x0 =

[
4
5

]
, ~v1 =

[
1
1

]
and ~v2 =

[
1
−1

]
as before.

Again define P = [~v1 ~v2] but this time let D =

[
1 0
0 −1/2

]
, and now find

[Ak~x0]B where A = PDP−1, for k = 1, 2, . . ..

[Ak~x0]B =
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Basis of Eigenvectors - part 3

Let ~x0 =

[
4
5

]
, ~v1 =

[
1
1

]
and ~v2 =

[
1
−1

]
as before.

Again define P = [~v1 ~v2] but this time let D =

[
2 0
0 3/2

]
, and now find

[Ak~x0]B where A = PDP−1, for k = 1, 2, . . ..

[Ak~x0]B =
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Chapter 5 : Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues
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Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate

2. Complex eigenvalues and eigenvectors.

3. Eigenvalue theorems

Learning Objectives

1. Use eigenvalues to determine identify the rotation and dilation of a
linear transform.

2. Rotation dilation matrices.

3. Find complex eigenvalues and eigenvectors of a real matrix.

4. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question
What are the eigenvalues of a rotation matrix?

Section 5.5 Slide 17



Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square
roots of negative numbers. For example:

x2 + 1 = 0

The roots of this equation are:

We usually write
√
−1 as i (for “imaginary”).
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Addition and Multiplication

The imaginary (or complex) numbers are denoted by C, where

C = {a+ bi | a, b in R}

We can identify C with R2: a+ bi↔ (a, b)

We can add and multiply complex numbers as follows:

(2− 3i) + (−1 + i) =

(2− 3i)(−1 + i) =
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Complex Conjugate, Absolute Value, Polar Form

We can conjugate complex numbers: a+ bi =

The absolute value of a complex number: |a+ bi| =

We can write complex numbers in polar form: a+ ib = r(cosφ+ i sinφ)
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Complex Conjugate Properties

If x and y are complex numbers, ~v ∈ Cn, it can be shown that:

• (x+ y) = x+ y

• A~v = A~v

• Im(xx) = 0.

Example True or false: if x and y are complex numbers, then

(xy) = x y
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Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Re(z)

Im(z) z = x+ iy

z̄ = x− iy

−φ

φ

O
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Euler’s Formula

Suppose z1 has angle φ1, and z2 has angle φ2.

Re(z)

Im(z)

z1z2

z3

φ1

φ2

O

The product z1z2 has angle φ1 + φ2 and modulus |z| |w|. Easy to
remember using Euler’s formula.

z = |z| eiφ

The product z1z2 is:

z3 = z1z2 = (|z1| eiφ1)(|z2|eiφ2) = |z1| |z2| ei(φ1+φ2)
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Complex Numbers and Polynomials

Every polynomial of degree n has exactly n complex roots, counting
multiplicity.

Theorem: Fundamental Theorem of Algebra

1. If λ ∈ C is a root of a real polynomial p(x), then the conjugate
λ is also a root of p(x).

2. If λ is an eigenvalue of real matrix A with eigenvector ~v, then λ
is an eigenvalue of A with eigenvector ~v.

Theorem
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Example

Four of the eigenvalues of a 7× 7 matrix are −2, 4 + i,−4− i, and i.
What are the other eigenvalues?
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Example

The matrix that rotates vectors by φ = π/4 radians about the origin, and
then scales (or dilates) vectors by r =

√
2, is

A =

[
r 0
0 r

] [
cosφ − sinφ
sinφ cosφ

]
=

[
1 −1
1 1

]
What are the eigenvalues of A? Find an eigenvector for each eigenvalue.
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Example

The matrix in the previous example is a special case of this matrix:

C =

(
a −b
b a

)
Calculate the eigenvalues of C and express them in polar form.
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Example

The matrix in the previous example is a special case of this matrix:

C =

(
a −b
b a

)
Calculate the eigenvalues of C and express them in polar form.
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Example

Find the complex eigenvalues and an associated complex eigenvector for
each eigenvalue for the matrix.

A =

(
1 −2
1 3

)

Section 5.5 Slide 29



Section 6.1 : Inner Product, Length, and
Orthogonality

Chapter 6: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Dot product of vectors

2. Magnitude of vectors, and distances in Rn

3. Orthogonal vectors and complements

4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude)
of a vector, (c) distance between two points in Rn, and (d) angles
between vectors.

2. Apply theorems related to orthogonal complements, and their
relationships to Row and Null space, to characterize vectors and
linear systems.

Motivating Question
For a matrix A, which vectors are orthogonal to all the rows of A? To
the columns of A?
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The Dot Product

The dot product between two vectors, ~u and ~v in Rn, is defined as

~u · ~v = ~u T~v =
[
u1 u2 · · · un

]

v1
v2

...
vn

 = u1v1 + u2v2 + · · ·+ unvn.

Example 1: For what values of k is ~u · ~v = 0?

~u =


−1
3
k
2

 , ~v =


4
2
1
−3
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Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits
linear properties.

Let ~u,~v, ~w be three vectors in Rn, and c ∈ R.

1. (Symmetry) ~u · ~w =

2. (Linear in each vector) (~v + ~w) · ~u =

3. (Scalars) (c~u) · ~w =

4. (Positivity) ~u · ~u ≥ 0, and the dot product equals

Theorem (Basic Identities of Dot Product)
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The Length of a Vector

The length of a vector ~u ∈ Rn is

‖~u‖ =
√
~u · ~u =

√
u21 + u22 + · · ·+ u2n

Definition

Example: the length of the vector
−−→
OP is√

12 + 32 + 22 =
√

14

O
x2

x3

x1

P (1, 3, 2)

31
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Example

Let ~u,~v be two vectors in Rn with ‖~u‖ = 5, ‖~v‖ =
√

3, and ~u · ~v = −1.
Compute the value of ‖~u+ ~v‖.
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Length of Vectors and Unit Vectors

Note: for any vector ~v and scalar c, the length of c~v is

‖c~v‖ = |c| ||~v||

If ~v ∈ Rn has length one, we say that it is a unit vector.

Definition

For example, each of the following vectors are unit vectors.

~e1 =

(
1
0

)
, ~y =

1√
5

(
1
2

)
, ~v =

1√
3


1
0
1
1
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Distance in Rn

For ~u,~v ∈ Rn, the distance between ~u and ~v is given by the formula

Definition

Example: Compute the distance from ~u =

(
7
1

)
and ~v =

(
3
2

)
.

~u

~v
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Orthogonality

Two vectors ~u and ~w are orthogonal if ~u · ~w = 0. This
is equivalent to:

‖~u+ ~w‖2 =

Definition (Orthogonal Vectors)

Note: The zero vector in Rn is orthogonal to every vector in Rn. But we
usually only mean non-zero vectors.
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Example

Sketch the subspace spanned by the set of all vectors ~u that are

orthogonal to ~v =

(
3
2

)
.

x1

x2

~v
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Orthogonal Compliments

Let W be a subspace of Rn. Vector ~z ∈ Rn is orthogonal to W if ~z
is orthogonal to every vector in W .

The set of all vectors orthogonal to W is a subspace, the orthogonal
compliment of W , or W⊥ or ‘W perp.’

W⊥ = {~z ∈ Rn : ~z · ~w = 0 for all ~w ∈W}

Definitions
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Example

Example: suppose A =

(
1 3
2 6

)
.

• ColA is the span of ~a1 =

(
1
2

)
• ColA⊥ is the span of ~z =

(
2
−1

) x1

x2

~a1

~z

ColA

Sketch NullA and NullA⊥ on the grid below.

x1

x2
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Example

Line L is a subspace of R3 spanned by ~v =

 1
−1
2

. Then the space L⊥

is a plane. Construct an equation of the plane L⊥.

x

y

z

L

~v

1

−1

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF
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RowA

RowA is the space spanned by the rows of matrix A.

Definition

We can show that

• dim(Row(A)) = dim(Col(A))

• a basis for RowA is the pivot rows of A

Note that Row(A) = Col(AT ), but in general RowA and ColA are not
related to each other
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Example 3

Describe the Null(A) in terms of an orthogonal subspace.

A vector ~x is in NullA if and only if

1. A~x =

2. This means that ~x is to each row of A.

3. RowA is to NullA.

4. The dimension of RowA plus the dimension of NullA equals
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For any A ∈ Rm×n, the orthogonal complement of RowA is
NullA, and the orthogonal complement of ColA is NullAT .

Theorem (The Four Subspaces)

The idea behind this theorem is described in the diagram below.

Row(A)

Null(A)

Col(A)

Null(AT )

Rn Rm
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Angles

~a ·~b = |~a| |~b| cos θ. Thus, if ~a ·~b = 0, then:

• ~a and/or ~b are vectors, or

• ~a and ~b are .

Theorem

For example, consider the vectors below.

~b

~a~c

θ

φ
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Looking Ahead - Projections

Suppose we want to find the closed vector in Span{~b} to ~a.

Span{~b}~b

~a

â =proj~b~a

• Later in this Chapter, we will make connections between dot
products and projections.

• Projections are also used throughout multivariable calculus courses.
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Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Orthogonal Sets of Vectors

2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of Rn, and
d) construct orthonormal bases.

Motivating Question
What are the special properties of this basis for R3?3

1
1

 /√11,

−1
2
1

 /√6,

−1
−4
7

 /√66
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Orthogonal Vector Sets

A set of vectors {~u1, . . . , ~up} are an orthogonal set of vectors
if for each j 6= k, ~uj ⊥ ~uk.

Definition

Example: Fill in the missing entries to make {~u1, ~u2, ~u3} an orthogonal
set of vectors.

~u1 =

4
0
1

 , ~u2 =

 −2
0

 , ~u3 =

 0
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Linear Independence

Let {~u1, . . . , ~up} be an orthogonal set of vectors. Then, for
scalars c1, . . . , cp,∥∥c1~u1 + · · ·+ cp~up

∥∥2 = c21‖~u1‖2 + · · ·+ c2p‖~up‖2.

In particular, if all the vectors ~ur are non-zero, the set of vectors
{~u1, . . . , ~up} are linearly independent.

Theorem (Linear Independence for Orthogonal Sets)
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Orthogonal Bases

Let {~u1, . . . , ~up} be an orthogonal basis for a subspace W of
Rn. Then, for any vector ~w ∈W ,

~w = c1~u1 + · · ·+ cp~up.

Above, the scalars are cq =
~w · ~uq
~uq · ~uq

.

Theorem (Expansion in Orthogonal Basis)

For example, any vector ~w ∈ R3 can be written as a linear combination
of {~e1, ~e2, ~e3}, or some other orthogonal basis {~u1, ~u2, ~u3}.

~e1 ~e2

~e3

~u1 ~u2

~u3
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Example

~x =

 1
1
1

 , ~u =

 1
−2
1

 , ~v =

−1
0
1

 , ~s =

 3
−4
1


Let W be the subspace of R3 that is orthogonal to ~x.

a) Check that an orthogonal basis for W is given by ~u and ~v.

b) Compute the expansion of ~s in basis W .
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Projections

Let ~u be a non-zero vector, and let ~v be some other vector. The
orthogonal projection of ~v onto the direction of ~u is the vector in the
span of ~u that is closest to ~v.

proj~u~v =
~v · ~u
~u · ~u

~u.

The vector ~w = ~v − proj~u~v is
orthogonal to ~u, so that

~v = proj~u~v + ~w

‖~v‖2 = ‖proj~u~v‖2 + ‖~w‖2
Span{~u}

~u

~v

proj~u~v

~w
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Example

Let L be spanned by ~u =


1
1
1
1

.

1. Calculate the projection of ~y = (−3, 5, 6,−4) onto line L.

2. How close is ~y to the line L?
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Definition

An orthonormal basis for a subspace W is an orthogonal basis
{~u1, . . . , ~up} in which every vector ~uq has unit length. In this
case, for each ~w ∈W ,

~w = (~w · ~u1)~u1 + · · ·+ (~w · ~up)~up

‖~w‖ =
√

(~w · ~u1)2 + · · ·+ (~w · ~up)2

Definition (Orthonormal Basis)
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Example

The subspace W is a subspace of R3 perpendicular to x = (1, 1, 1).
Calculate the missing coefficients in the orthonormal basis for W .

u =
1
√

 1
0

 v =
1
√
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Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are
orthonormal.

An m×n matrix U has orthonormal columns if and only if UTU = In.

Theorem

Can U have orthonormal columns if n > m?
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Theorem

Assume m×m matrix U has orthonormal columns. Then

1. (Preserves length) ‖U~x‖ =

2. (Preserves angles) (U~x) · (U~y) =

3. (Preserves orthogonality)

Theorem (Mapping Properties of Orthogonal Matrices)
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Example

Compute the length of the vector below.
1/2 2/

√
14

1/2 1/
√

14

1/2 −3/
√

14
1/2 0

[√2
−3

]
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Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~e1

~e2

~y

ŷ ∈ Span{~e1, ~e2} = W

Vectors ~e1 and ~e2 form an orthonormal basis for subspace W .
Vector ~y is not in W .

The orthogonal projection of ~y onto W =Span{~e1, ~e2} is ŷ.
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Topics and Objectives

Topics

1. Orthogonal projections and their basic properties

2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) construct vector approximations using projections,
d) characterize bases for subspaces of Rn, and
e) construct orthonormal bases.

Motivating Question For the matrix A and vector ~b, which vector b̂ in
column space of A, is closest to ~b?

A =

 1 2
3 0
−4 −2

 , ~b =

1
1
1
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Example 1

Let ~u1, . . . , ~u5 be an orthonormal basis for R5. Let W = Span{~u1, ~u2}.
For a vector ~y ∈ R5, write ~y = ŷ + w⊥, where ŷ ∈W and w⊥ ∈W⊥.
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Orthogonal Decomposition Theorem

Let W be a subspace of Rn. Then, each vector ~y ∈ Rn has the
unique decomposition

~y = ŷ + w⊥, ŷ ∈W, w⊥ ∈W⊥.

And, if ~u1, . . . , ~up is any orthogonal basis for W ,

ŷ =
~y · ~u1
~u1 · ~u1

~u1 + · · ·+ ~y · ~up
~up · ~up

~up.

We say that ŷ is the orthogonal projection of ~y onto W .

Theorem

If time permits, we will explain some of this theorem on the next slide.
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Explanation (if time permits)

We can write

ŷ =

Then, w⊥ = ~y − ŷ is in W⊥ because
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Example 2a

~y =

 4
0
3

 , ~u1 =

 2
2
0

 , ~u2 =

 0
0
1


Construct the decomposition ~y = ŷ + w⊥, where ŷ is the orthogonal
projection of ~y onto the subspace W = Span{~u1, ~u2}.
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Best Approximation Theorem

Let W be a subspace of Rn, ~y ∈ Rn, and ŷ is the orthogonal
projection of ~y onto W . Then for any ~w 6= ŷ ∈W , we have

‖~y − ŷ‖ < ‖~y − ~w‖

That is, ŷ is the unique vector in W that is closest to ~y.

Theorem
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Proof (if time permits)

The orthogonal projection of ~y onto W is the closest point in W to ~y.

~y

ŷ ∈W
~v ∈WW
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Example 2b

~y =

 4
0
3

 , ~u1 =

 2
2
0

 , ~u2 =

 0
0
1


What is the distance between ~y and subspace W = Span{~u1, ~u2}? Note
that these vectors are the same vectors that we used in Example 2a.
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Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~x1

~x2

~x3

~q1

~q2

~q3

Vectors ~x1, ~x2, ~x3 are given linearly independent vectors. We wish to construct
an orthonormal basis {~q1, ~q2, ~q3} for the space that they span.
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Topics and Objectives

Topics

1. Gram Schmidt Process

2. The QR decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR
decomposition, to construct an orthogonal basis.

2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of R4.
Identify an orthogonal basis for W .

~x1 =


1
1
1
1

 , ~x2 =


0
1
1
1

 , ~x3 =


0
0
1
1

 .
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Example

The vectors below span a subspace W of R4. Construct an orthogonal
basis for W .

~x1 =


1
1
1
1

 , ~x2 =


0
1
1
1

 , ~x3 =


0
0
1
1

 .
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The Gram-Schmidt Process

Given a basis {~x1, . . . , ~xp} for a subspace W of Rn, iteratively define

~v1 = ~x1

~v2 = ~x2 −
~x2 · ~v1
~v1 · ~v1

~v1

~v3 = ~x3 −
~x3 · ~v1
~v1 · ~v1

~v1 −
~x3 · ~v2
~v2 · ~v2

~v2

...

~vp = ~xp −
~xp · ~v1
~v1 · ~v1

~v1 − · · · −
~xp · ~vp−1
~vp−1 · ~vp−1

~vp−1

Then, {~v1, . . . , ~vp} is an orthogonal basis for W .
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Proof
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Geometric Interpretation

Suppose ~x1, ~x2, ~x3 are linearly independent vectors in R3. We wish to
construct an orthogonal basis for the space that they span.

~x1 = ~v1

~x2

~x3

~v2

~v3

projW2
~x3

W1

W2

We construct vectors ~v1, ~v2, ~v3, which form our orthogonal basis.
W1 = Span{~v1}, W2 = Span{~v1, ~v2}.
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Orthonormal Bases

A set of vectors form an orthonormal basis if the vectors are
mutually orthogonal and have unit length.

Definition

Example
The two vectors below form an orthogonal basis for a subspace W .
Obtain an orthonormal basis for W .

~v1 =

3
2
0

 , ~v2 =

−2
3
1

 .

Section 6.4 Slide 76



QR Factorization

Any m × n matrix A with linearly independent columns has the QR
factorization

A = QR

where
1. Q is m× n, its columns are an orthonormal basis for ColA.

2. R is n× n, upper triangular, with positive entries on its
diagonal, and the length of the jth column of R is equal to the
length of the jth column of A.

Theorem

In the interest of time:

• we will not consider the case where A has linearly dependent
columns

• students are not expected to know the conditions for which A has a
QR factorization
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Proof
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Example

Construct the QR decomposition for A =

3 −2
2 3
0 1

.
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Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

https://xkcd.com/1725
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Topics and Objectives

Topics

1. Least Squares Problems

2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares
problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by
random errors. How can the dominant trend be extracted from the
measurements with random error?
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Inconsistent Systems

Suppose we want to construct a line of the form

y = mx+ b

that best fits the data below.

x

y

From the data, we can construct the system:
1 0
1 1
1 2
1 3

[ bm
]

=


0.5
1

2.5
3



Can we ‘solve’ this inconsistent system?
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The Least Squares Solution to a Linear System

Let A be a m×n matrix. A least squares solution to A~x = ~b
is the solution x̂ for which

‖~b−Ax̂ ‖ ≤ ‖~b−A~x ‖

for all ~x ∈ Rn.

Definition: Least Squares Solution
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A Geometric Interpretation

~b

Ax̂

A~x

Col(A) ~0

The vector ~b is closer to Ax̂ than to A~x for all other ~x ∈ ColA.

1. If ~b ∈ ColA, then x̂ is . . .

2. Seek x̂ so that Ax̂ is as close to ~b as possible. That is, x̂ should
solve Ax̂ = b̂ where b̂ is . . .
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Important Examples: Overdetermined Systems (Tall/Thin
Matrices)

A variety of factors impact the measured quantity.

In the above figure, the dashed red line with diamond symbols represents
the monthly mean values, centered on the middle of each month. The
black line with the square symbols represents the same, after correction
for the average seasonal cycle. (NOAA graph.)
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Previous data is the important time series of mean CO2 in the
atmosphere. The data is collected at the Mauna Loa observatory on the
island of Hawaii (The Big Island). One of the most important
observatories in the world, it is located at the top of the Mauna Kea
volcano, 4,205 meters altitude.
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The Normal Equations

The least squares solutions to A~x = ~b coincide with the
solutions to

ATA~x = AT~b︸ ︷︷ ︸
Normal Equations

Theorem (Normal Equations for Least Squares)
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Derivation

~b

Ax̂

~b−Ax̂

Col(A)
~0

Rn x̂ A

The least-squares solution x̂ is in Rn.

1. x̂ is the least squares solution, is equivalent to ~b−Ax̂ is orthogonal

to A.

2. A vector ~v is in NullAT if and only if ~v = ~0.

3. So we obtain the Normal Equations:
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Example

Compute the least squares solution to A~x = ~b, where

A =

4 0
0 2
1 1

 , ~b =

 2
0
11


Solution:

ATA =

[
4 0 1
0 2 1

]4 0
0 2
1 1

 =

AT~b =

[
4 0 1
0 2 1

] 2
0
11

 =
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The normal equations ATA~x = AT~b become:
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Theorem

Let A be any m× n matrix. These statements are equivalent.
1. The equation A~x = ~b has a unique least-squares solution

for each ~b ∈ Rm.

2. The columns of A are linearly independent.

3. The matrix ATA is invertible.
And, if these statements hold, the least square solution is

x̂ = (ATA)−1AT~b.

Theorem (Unique Solutions for Least Squares)

Useful heuristic: ATA plays the role of ‘length-squared’ of the matrix A.
(See the sections on symmetric matrices and singular value
decomposition.)
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Example

Compute the least squares solution to A~x = ~b, where

A =


1 −6
1 −2
1 1
1 7

 , ~b =


−1
2
1
6


Hint: the columns of A are orthogonal.

Section 6.5 Slide 92



Section 6.5 Slide 93



Let m× n matrix A have a QR decomposition. Then for each
~b ∈ Rm the equation A~x = ~b has the unique least squares
solution

Rx̂ = QT~b.

(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

Theorem (Least Squares and QR)
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Example 3. Compute the least squares solution to A~x = ~b, where

A =


1 3 5
1 1 0
1 1 2
1 3 3

 , ~b =


3
5
7
−3


Solution. The QR decomposition of A is

A = QR = 1
2


1 1 1
1 −1 −1
1 −1 1
1 1 −1


2 4 5

0 2 3
0 0 2
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QT~b = 1
2

1 1 1 1
1 −1 −1 1
1 −1 1 −1




3
5
7
−3

 =

−6
4


And then we solve by backwards substitution R~x = QT~b2 4 5

0 2 3
0 0 2

x1x2
x3

 =

−6
4
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Chapter 6 : Orthogonality and Least Squares
6.6 : Applications to Linear Models
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Topics and Objectives

Topics

1. Least Squares Lines

2. Linear and more complicated models

Learning Objectives
For the topics covered in this section, students are expected to be able to
do the following.

1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.

2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question
Compute the equation of the line y = β0 + β1x that best fits the data

x 2 5 7 8
y 1 1 4 3
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the .

The least squares line minimizes the sum of squares of the .

x

y
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Example 1 Compute the least squares line y = β0 + β1x that best fits
the data

x 2 5 7 8
y 1 1 4 3

We want to solve 
1 2
1 5
1 7
1 8

[β0β1
]

=


1
1
4
3


This is a least-squares problem : X~β = ~y.

Section 6.6 Slide 100



The normal equations are

XTX =

[
1 1 1 1

]
1
1
1
1

 =

[
4 22
22 142

]

XT~y =

[
1 1 1 1

]
 =

[
9
59

]

So the least-squares solution is given by[
4 22
22 142

] [
β0
β1

]
=

[
9
59

]

y = β0 + β1x =
−5

21
+

19

42
x

As we may have guessed, β0 is negative, and β1 is positive.
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Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

y = c0 + c1f1(x) + c2f2(x) + · · ·+ ckfk(x).

If functions fi are known, this is a linear problem in the ci variables.

Example
Consider the data in the table below.

x −1 0 0 1
y 2 1 0 6

Determine the coefficients c1 and c2 for the curve y = c1x+ c2x
2 that

best fits the data.
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WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

WolframAlpha

linear fit {{x1, y1}, {x2, y2}, . . . , {xn, yn}}

Mathematica

LeastSquares[{{x1, x1, y1}, {x2, x2, y2}, . . . , {xn, xn, yn}}]

Almost any spreadsheet program does this as a function as well.
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