
Chapter 10 : Finite-State Markov Chains

10.2 : The Steady-State Vector and Page Rank
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Topics and Objectives

Topics

1. Review of Markov chains

2. Theorem describing the steady state of a Markov chain

3. Applying Markov chains to model website usage.

4. Calculating the PageRank of a web.

Learning Objectives

1. Determine whether a stochastic matrix is regular.

2. Apply matrix powers and theorems to characterize the long-term
behaviour of a Markov chain.

3. Construct a transition matrix, a Markov Chain, and a Google Matrix
for a given web, and compute the PageRank of the web.
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Where is Chapter 10?

• The material for this part of the course is covered in Section 10.2

• Chapter 10 is not included in the print version of the book, but it is
in the on-line version.

• If you read 10.2, and I recommend that you do, you will find that it
requires an understanding of 10.1.

• You are not required to understand the material in 10.1.
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Steady State Vectors

Recall the car rental problem from our Section 4.9 lecture.

A car rental company has 3 rental locations, A, B, and C.

rented from
A B C

returned to
A .8 .1 .2
B .2 .6 .3
C .0 .3 .5

There are 10 cars at each location today, what happens to the distri-
bution of cars after a long time?

Problem
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Long Term Behaviour

Can use the transition matrix, P , to find the distribution of cars after 1
week:

x⃗1 = Px⃗0

The distribution of cars after 2 weeks is:

x⃗2 = Px⃗1 = PPx⃗0

The distribution of cars after n weeks is:
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Long Term Behaviour

To investigate the long-term behaviour of a system that has a regular
transition matrix P , we could:

1. compute the steady-state vector, q⃗, by solving q⃗ = P q⃗.

2. compute Pnx⃗0 for large n.

3. compute Pn for large n, each column of the resulting matrix is the
steady-state
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Theorem 1

If P is a regular m×m transition matrix with m ≥ 2, then the following
statements are all true.

1. There is a stochastic matrix Π such that

lim
n→∞

Pn = Π

2. Each column of Π is the same probability vector q⃗.

3. For any initial probability vector x⃗0,

lim
n→∞

Pnx⃗0 = q⃗

4. P has a unique eigenvector, q⃗, which has eigenvalue λ = 1.

5. The eigenvalues of P satisfy |λ| ≤ 1.

We will apply this theorem when solving PageRank problems.
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Example 1

A set of web pages link to each other according to this diagram.

A B

C D E

Page A has links to pages .

Page B has links to pages .

We make two assumptions:

a) A user on a page in this web is equally likely to go to any of the
pages that their page links to.

b) If a user is on a page that does not link to other pages, the user
stays at that page.

Use these assumptions to construct a Markov chain that represents how
users navigate the above web.
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Solution

Use the assumptions on the previous slide to construct a Markov chain
that represents how users navigate the web.

A B

C D E
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Transition Matrix, Importance, and PageRank

• The square matrix we constructed in the previous example is a
transition matrix. It describes how users transition between pages
in the web.

• The steady-state vector, q⃗, for the Markov-chain, can characterize
the long-term behavior of users in a given web.

• If q⃗ is unique, the importance of a page in a web is given by its
corresponding entry in q⃗.

• The PageRank is the ranking assigned to each page based on its
importance. The highest ranked page has PageRank 1, the second
PageRank 2, and so on.

• Two pages with same importance receive the same PageRank (some
other method would be needed to resolve ties)

Is the transition matrix in Example 1 a regular matrix?
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Adjustment 1

If a user reaches a page that does not link to other pages, the
user will choose any page in the web, with equal probability,
and move to that page.

Adjustment 1

Let’s denote this modified transition matrix as P∗. Our transition matrix
in Example 1 becomes:
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Adjustment 2

A user at any page will navigate to any page among those that
their page links to with equal probability p, and to any page
in the web with equal probability 1− p. The transition matrix
becomes

G = pP∗ + (1− p)K

All the elements of the n× n matrix K are equal to 1/n.

Adjustment 2

p is referred to as the damping factor, Google is said to use p = 0.85.

With adjustments 1 and 2, our the Google matrix is:
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Computing Page Rank

• Because G is stochastic, for any initial probability vector x⃗0,

lim
n→∞

Gnx⃗0 = q⃗

• We can obtain steady-state evaluating Gnx⃗0 for large n, by solving
Gq⃗ = q⃗, or by evaluating x⃗n = Gx⃗n−1 for large n.

• Elements of the steady-state vector give the importance of each
page in the web, which can be used to determine PageRank.

• Largest element in steady-state vector corresponds to page with
PageRank 1, second largest with PageRank 2, and so on.

On an exam,

• problems that require a calculator will not be on your exam

• you may construct your G matrix using factions instead of decimal
expansions
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There is (of course) Much More to PageRank

The PageRank Algorithm
currently used by Google
is under constant
development, and tailored
to individual users.

• When PageRank was devised, in 1996,
Yahoo! used humans to provide a ”index
for the Internet, ” which was 10 million
pages.

• The PageRank algorithm was produced as
a competing method. The patent was
awarded to Stanford University, and
exclusively licensed to the newly formed
Google corporation.

• Brin and Page combined the PageRank
algorithm with a webcrawler to provide
regular updates to the transition matrix for
the web.

• The explosive growth of the web soon
overwhelmed human based approaches to
searching the internet.
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WolframAlpha and MATLAB/Octave Syntax

Suppose we want to compute .8 .1 .2
.2 .6 .3
.0 .3 .5

10

• At wolframalpha.com, we can use the syntax:

MatrixPower[{{.8,.1,.2},{.2,.6,.3},{.0,.3,.5}},10]

• In MATLAB, we can use the syntax

[.8 .1 .2 ;.2 .6 .3;.0 .3 .5]^10

• Octave uses the same syntax as MATLAB, and there are several free,
online, Octave compilers. For example: https://octave-online.net.

You will need to compute a few matrix powers in your homework, and in
your future courses, depending on what courses you end up taking.
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Example 2 (if time permits)

Construct the Google Matrix for the web below. Which page do you
think will have the highest PageRank? How would your result depend on
the damping factor p? Use software to explore these questions.

A B

C D
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Section 7.1 : Diagonalization of Symmetric
Matrices

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Symmetric matrices

2. Orthogonal diagonalization

3. Spectral decomposition

Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix,
A = PDPT .

2. Construct a spectral decomposition of a matrix.
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Symmetric Matrices

Matrix A is symmetric if AT = A.

Definition

Example. Which of the following matrices are symmetric? Symbols ∗
and ⋆ represent real numbers.

A = [∗] B =

[
0 1
1 0

]
C =

[
4 0
0 0

]

D =

[
1 1
0 0

]
E =

4 2
0 0
0 0

 F =


4 2 0 1
2 0 7 4
0 7 6 0
1 4 0 3


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ATA is Symmetric

A very common example: For any matrix A with columns a1, . . . , an,

ATA =


−− aT1 −−
−− aT2 −−
...

...
...

−− aTn −−


 | | · · · |
a1 a2 · · · an
| | · · · |



=


aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an
...

...
. . .

...
aTna1 aTna2 · · · aTnan


︸ ︷︷ ︸

Entries are the dot products of columns of A
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Symmetric Matrices and their Eigenspaces

A is a symmetric matrix, with eigenvectors v⃗1 and v⃗2 corresponding
to two distinct eigenvalues. Then v⃗1 and v⃗2 are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are
orthogonal subspaces.

Theorem

Proof:
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Example 1

Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.

A =

 0 0 1
0 1 0
1 0 0

 , λ = −1, 1

Hint: Gram-Schmidt
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Spectral Theorem

Recall: If P is an orthogonal n× n matrix, then P−1 = PT , which
implies A = PDPT is diagonalizable and symmetric.

An n× n symmetric matrix A has the following properties.

1. All eigenvalues of A are real.

2. The dimenison of each eigenspace is full, that it’s
dimension is equal to it’s algebraic multiplicity.

3. The eigenspaces are mutually orthogonal.

4. A can be diagonalized: A = PDPT , where D is diagonal
and P is orthogonal.

Theorem: Spectral Theorem

Proof (if time permits):
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Spectral Decomposition of a Matrix

Suppose A can be orthogonally diagonalized as

A = PDPT =
[
u⃗1 · · · u⃗n

] λ1 · · · 0
...

. . .
...

0 · · · λn


u⃗

T
1
...
u⃗T
n


Then A has the decomposition

A = λ1u⃗1u⃗
T
1 + · · ·+ λnu⃗nu⃗

T
n =

n∑
i=1

λiu⃗iu⃗
T
i

Spectral Decomposition

Each term in the sum, λiu⃗iu⃗
T
i , is an n× n matrix with rank 1.

Section 7.1 Slide 24



Example 2

Construct a spectral decomposition for A whose orthogonal
diagonalization is given.

A =

(
3 1
1 3

)
= PDPT

=

(
1/

√
2 −1/

√
2

1/
√
2 1/

√
2

)(
4 0
0 2

)(
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)
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Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Quadratic forms

2. Change of variables

3. Principle axes theorem

4. Classifying quadratic forms

Learning Objectives

1. Characterize and classify quadratic forms using eigenvalues and
eigenvectors.

2. Express quadratic forms in the form Q(x⃗) = x⃗TAx⃗.

3. Apply the principle axes theorem to express quadratic forms with no
cross-product terms.

Motivating Question Does this inequality hold for all x, y?

x2 − 6xy + 9y2 ≥ 0
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Quadratic Forms

A quadratic form is a function Q : Rn → R, given by

Q(x⃗) = x⃗TAx⃗ =
[
x1 x2 · · · xn

]

a11 a12 · · · a1n
a12 a22 · · · a2n
...

...
. . .

...
a1n a2n · · · ann



x1

x2

· · ·
xn


Matrix A is n× n and symmetric.

Definition

In the above, x⃗ is a vector of variables.
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Example 1

Compute the quadratic form x⃗TAx⃗ for the matrices below.

A =

[
4 0
0 3

]
, B =

[
4 1
1 −3

]
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Example 1 - Surface Plots

The surfaces for Example 1 are shown below.

−4 −2 0 2 4 −5

0

5

0

100

x1

x2

−4 −2 0 2 4 −5

0

5

−100

0

100

x1

x2

Students are not expected to be able to sketch quadratic surfaces, but it
is helpful to see what they look like.
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Example 2

Write Q in the form x⃗TAx⃗ for x⃗ ∈ R3.

Q(x) = 5x2
1 − x2

2 + 3x2
3 + 6x1x3 − 12x2x3
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Change of Variable

If x⃗ is a variable vector in Rn, then a change of variable can be
represented as

x⃗ = P y⃗, or y⃗ = P−1x⃗

With this change of variable, the quadratic form x⃗TAx⃗ becomes:
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Example 3

Make a change of variable x⃗ = P y⃗ that transforms Q = x⃗TAx⃗ so that it
does not have cross terms. The orthogonal decomposition of A is given.

A =

(
3 2
2 6

)
= PDPT

P =
1√
5

(
2 1
−1 2

)
D =

(
2 0
0 7

)
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Geometry

Suppose Q(x⃗) = x⃗TAx⃗, where A ∈ Rn×n is symmetric. Then the set of
x⃗ that satisfies

C = x⃗TAx⃗

defines a curve or surface in Rn.
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Principle Axes Theorem

If A is a matrix then there exists an
orthogonal change of variable x⃗ = P y⃗ that transforms x⃗TAx⃗ to
x⃗TDx⃗ with no cross-product terms.

Theorem

Proof (if time permits):
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Example 5

Compute the quadratic form Q = x⃗TAx⃗ for A =

(
5 2
2 8

)
, and find a

change of variable that removes the cross-product term. A sketch of Q is
below.

x1

x2 semi-minor axis

semi-major axis
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Classifying Quadratic Forms

5

10

Q = x21 + x22
Q = −x21 − x22

A quadratic form Q is
1. positive definite if for all x⃗ ̸= 0⃗.

2. negative definite if for all x⃗ ̸= 0⃗.

3. positive semidefinite if for all x⃗.

4. negative semidefinite if for all x⃗.

5. indefinite if

Definition
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Quadratic Forms and Eigenvalues

If A is a matrix with eigenvalues λi,
then Q = x⃗TAx⃗ is

1. positive definite iff λi

2. negative definite iff λi

3. indefinite iff λi

Theorem

Proof (if time permits):
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Example 6

We can now return to our motivating question (from first slide): does
this inequality hold for all x, y?

x2 − 6xy + 9y2 ≥ 0
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Section 7.3 : Constrained Optimization

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Constrained optimization as an eigenvalue problem

2. Distance and orthogonality constraints

Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems
that are subject to distance and orthogonality constraints.
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Example 1

The surface of a unit sphere in R3 is
given by

1 = x2
1 + x2

2 + x2
3 = ||x⃗||2

Q is a quantity we want to optimize

Q(x⃗) = 9x2
1 + 4x2

2 + 3x2
3

Find the largest and smallest values of Q on the surface of the sphere.
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A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

Q(x⃗) = x⃗TAx⃗

subject to
||x⃗|| = 1

That is, we want to find

m = min{Q(x⃗) : ||x⃗|| = 1}
M = max{Q(x⃗) : ||x⃗|| = 1}

This is an example of a constrained optimization problem. Note that
we may also want to know where these extreme values are obtained.
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Constrained Optimization and Eigenvalues

If Q = x⃗TAx⃗, A is a real n× n symmetric matrix, with eigenvalues

λ1 ≥ λ2 . . . ≥ λn

and associated normalized eigenvectors

u⃗1, u⃗2, . . . , u⃗n

Then, subject to the constraint ||x⃗|| = 1,
• the maximum value of Q(x⃗) = λ1, attained at x⃗ = ± u⃗1.

• the minimum value of Q(x⃗) = λn, attained at x⃗ = ± u⃗n.

Theorem

Proof:
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Example 2

Calculate the maximum and minimum values of Q(x⃗) = x⃗TAx⃗, x⃗ ∈ R3,
subject to ||x⃗|| = 1, and identify points where these values are obtained.

Q(x⃗) = x2
1 + 2x2x3
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Example 2

The image below is the unit sphere whose surface is colored according to
the quadratic from the previous example. Notice the agreement between
our solution and the image.
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An Orthogonality Constraint

Suppose Q = x⃗TAx⃗, A is a real n × n symmetric matrix, with
eigenvalues

λ1 ≥ λ2 . . . ≥ λn

and associated eigenvectors

u⃗1, u⃗2, . . . , u⃗n

Subject to the constraints ||x⃗|| = 1 and x⃗ · u⃗1 = 0,
• The maximum value of Q(x⃗) = λ2, attained at x⃗ = u⃗∗.

• The minimum value of Q(x⃗) = λn, attained at x⃗ = u⃗n.

Note that λ2 is the second largest eigenvalue of A.

Theorem
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Example 3

Calculate the maximum value of Q(x⃗) = x⃗TAx⃗, x⃗ ∈ R3, subject to
||x⃗|| = 1 and to x⃗ · u⃗1 = 0, and identify a point where this maximum is
obtained.

Q(x⃗) = x2
1 + 2x2x3, u⃗1 =

 1
0
0


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Example 4 (if time permits)

Calculate the maximum value of Q(x⃗) = x⃗TAx⃗, x⃗ ∈ R3, subject to
||x⃗|| = 5, and identify a point where this maximum is obtained.

Q(x⃗) = x2
1 + 2x2x3
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Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. The Singular Value Decomposition (SVD) and some of its
applications.

Learning Objectives

1. Compute the SVD for a rectangular matrix.

2. Apply the SVD to
▶ estimate the rank and condition number of a matrix,
▶ construct a basis for the four fundamental spaces of a matrix, and
▶ construct a spectral decomposition of a matrix.
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Example 1

The linear transform whose standard matrix is

A =
1√
2

(
1 −1
1 1

)(
2
√
2 0

0
√
2

)
=

(
2 −1
2 1

)
maps the unit circle in R2 to an ellipse, as shown below. Identify the unit
vector x⃗ in which ||Ax⃗|| is maximized and compute this length.

x1

x2

multiply by A
x1

x2
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Example 1 - Solution
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Singular Values

The matrix ATA is always symmetric, with non-negative eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Let {v⃗1, . . . , v⃗n} be the associated orthonormal
eigenvectors. Then

∥Av⃗j∥2 =

If the A has rank r, then {Av⃗1, . . . , Av⃗r} is an orthogonal basis for ColA:
For 1 ≤ j < k ≤ r:

(Av⃗j)
TAv⃗k =

Definition: σ1 =
√
λ1 ≥ σ2 =

√
λ2 · · · ≥ σn =

√
λn are the singular

values of A.
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The SVD

A m × n matrix with rank r and non-zero singular values σ1 ≥
σ2 ≥ · · · ≥ σr has a decomposition UΣV T where

Σ =

[
D 0
0 0

]
m×n

=


σ1 0 . . . 0

0 σ2 . . .
... 0

...
...

. . .

0 0 . . . σr

0 0


U is a m × m orthogonal matrix, and V is a n × n orthogonal
matrix.

Theorem: Singular Value Decomposition
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Algorithm to find the SVD of A

Suppose A is m× n and has rank r ≤ n.

1. Compute the squared singular values of ATA, σ2
i , and construct Σ.

2. Compute the unit singular vectors of ATA, v⃗i, use them to form V .

3. Compute an orthonormal basis for ColA using

u⃗i =
1

σi
Av⃗i, i = 1, 2, . . . r

Extend the set {u⃗i} to form an orthonomal basis for Rm, use the
basis for form U .
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Example 2: Write down the singular value decomposition for
2 0
0 −3
0 0
0 0

 =
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Example 3: Construct the singular value decomposition of

A =

 1 −1
−2 2
2 −2

.
(It has rank 1.)
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Applications of the SVD

The SVD has been applied to many modern applications in CS,
engineering, and mathematics (our textbook mentions the first four).

• Estimating the rank and condition number of a matrix

• Constructing bases for the four fundamental spaces

• Computing the pseudoinverse of a matrix

• Linear least squares problems

• Non-linear least-squares
https://en.wikipedia.org/wiki/Non-linear least squares

• Machine learning and data mining
https://en.wikipedia.org/wiki/K-SVD

• Facial recognition
https://en.wikipedia.org/wiki/Eigenface

• Principle component analysis
https://en.wikipedia.org/wiki/Principal component analysis

• Image compression

Students are expected to be familiar with the 1st two items in the list.
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The Condition Number of a Matrix

If A is an invertible n× n matrix, the ratio

σ1

σn

is the condition number of A.

Note that:

• The condition number of a matrix describes the sensitivity of a
solution to Ax⃗ = b⃗ is to errors in A.

• We could define the condition number for a rectangular matrix, but
that would go beyond the scope of this course.
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Example 4

For A = UΣV ∗, determine the rank of A, and orthonormal bases for
NullA and (ColA)⊥.
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Example 4 - Solution
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The Four Fundamental Spaces

1. Av⃗s = σsu⃗s.

2. v⃗1, . . . , v⃗r is an orthonormal basis for RowA.

3. u⃗1, . . . , u⃗r is an orthonormal basis for ColA.

4. v⃗r+1, . . . , v⃗n is an orthonormal basis for NullA.

5. u⃗r+1, . . . , u⃗n is an orthonormal basis for NullAT .
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The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for
any matrix with rank r

A =

r∑
s=1

σsu⃗sv⃗
T
s ,

where u⃗s, v⃗s are the sth columns of U and V respectively.

For the case when A = AT , we obtain the same spectral decomposition
that we encountered in Section 7.2.

Section 7.4 Slide 66


