In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.
true false
\bigcirc If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.
$\bigcirc \bigcirc$ A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues.
$\bigcirc \bigcirc x^{2}-2 x y+4 y^{2} \geq 0$ for all real values of x and y.
If matrix A has linearly dependent columns, then $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)>0$.
If λ is an eigenvalue of A, then $\operatorname{dim}(\operatorname{Null}(A-\lambda I))>0$.
$\bigcirc \bigcirc$ If A has $Q R$ decomposition $A=Q R$, then $\operatorname{Col} A=\operatorname{Col} Q$.
If A has $L U$ decomposition $A=L U$, then $\operatorname{rank}(A)=\operatorname{rank}(U)$.
$\bigcirc \bigcirc$ If A has $L U$ decomposition $A=L U$, then $\operatorname{dim}(\operatorname{Null} A)=\operatorname{dim}(\operatorname{Null} U))$.
2. Give an example of the following.
i) A 4×3 lower triangular matrix, A. such that $\operatorname{Col}(A)^{\perp}$ is spanned by the vector $\vec{v}=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right) . \quad A=(\quad)$
ii) A 3×4 matrix A, that is in RREF, and satisfies $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=2$ and $\operatorname{dim}\left((\operatorname{Col} A)^{\perp}\right)=$ 2. $A=(\square)$
3. (3 points) Suppose $A=\left(\begin{array}{ll}3 & 1 \\ 6 & 2\end{array}\right)$. On the grid below, sketch a) $\operatorname{Col}(A)$, and b) the eigenspace corresponding to eigenvalue $\lambda=5$.

(b) $\lambda=5$ eigenspace

4. Fill in the blanks.
(a) If $A \in \mathbb{R}^{M \times N}, M<N$, and $A \vec{x}=0$ does not have a non-trivial solution, how many pivot columns does A have?
(b) Consider the following linear transformation.

$$
T\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2}, 4 x_{1}-2 x_{2}, x_{2}-2 x_{1}\right)
$$

The domain of T is \square. The image of $\vec{x}=\binom{1}{0}$ under $T(\vec{x})$ is (\quad). The co-domain of T is \square. The range of T is:
5. Four points in \mathbb{R}^{2} with coordinates (t, y) are $(0,1),\left(\frac{1}{4}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right)$, and $\left(\frac{3}{4},-\frac{1}{2}\right)$. Determine the values of c_{1} and c_{2} for the curve $y=c_{1} \cos (2 \pi t)+c_{2} \sin (2 \pi t)$ that best fits the points. Write the values you obtain for c_{1} and c_{2} in the boxes below.

$$
c_{1}=\square \quad c_{2}=\square
$$

