In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false. true false

\bigcirc	\bigcirc	For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W , the vector $\vec{v} = \vec{y} - \text{proj}_W \vec{y}$ is orthogonal to W .
\bigcirc	\bigcirc	If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
\bigcirc	\bigcirc	If a matrix is invertible it is also diagonalizable.
\bigcirc	\bigcirc	If E is an echelon form of A, then $\operatorname{Null} A = \operatorname{Null} E$.
\bigcirc	\bigcirc	If the SVD of $n \times n$ singular matrix A is $A = U\Sigma V^T$, then $\text{Col}A = \text{Col}U$.
\bigcirc	0	If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, $r = \operatorname{rank} A$, then the first r columns of V give a basis for Null A .

- 2. Give an example of:
 - a) a vector $\vec{u} \in \mathbb{R}^3$ such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 0\\2\\0 \end{pmatrix}$

b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} & \\ & \\ \end{pmatrix}$ c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$.

d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate

- 1. $A(\vec{v}_1 + 4\vec{v}_2)$
- 2. A^{10}
- 3. $\lim_{k \to \infty} A^k (\vec{v}_1 + 4\vec{v}_2)$