In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false. true false
\bigcirc For any vector $\vec{y} \in \mathbb{R}^{2}$ and subspace W, the vector $\vec{v}=\vec{y}-\operatorname{proj}_{W} \vec{y}$ is orthogonal to W.
\bigcirc If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{m}.
$\bigcirc \quad$ If a matrix is invertible it is also diagonalizable.If E is an echelon form of A, then $\operatorname{Null} A=\operatorname{Null} E$.

If the SVD of $n \times n$ singular matrix A is $A=U \Sigma V^{T}$, then $\operatorname{Col} A=\operatorname{Col} U$.

If the SVD of $n \times n$ matrix A is $A=U \Sigma V^{T}, r=\operatorname{rank} A$, then the first r columns of V give a basis for Null A.
2. Give an example of:
a) a vector $\vec{u} \in \mathbb{R}^{3}$ such that $\operatorname{proj}_{\vec{p}} \vec{u}=\vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p}=\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right): \quad \vec{u}=(\quad)$
b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $\quad A=(\square)$
c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\left(\begin{array}{c}1 \\ -3 \\ -4\end{array}\right)$.
d) A 2×2 matrix in RREF that is diagonalizable and not invertible.
3. Suppose $A=\left(\begin{array}{ll}2 & -1 \\ 4 & -2\end{array}\right)$. On the grid below, sketch a) the range of $\left.x \rightarrow A x, \mathrm{~b}\right)(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A \vec{x}=\binom{3}{6}$.
(a) range

(b) $(\operatorname{Col} A)^{\perp}$

(c) solutions

4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_{1}=\frac{1}{2}$ and $\lambda_{2}=1$, and whose corresponding eigenvectors are $\vec{v}_{1}=\binom{1}{0}, \vec{v}_{2}=\binom{4}{1}$. Calculate

1. $A\left(\vec{v}_{1}+4 \vec{v}_{2}\right)$
2. A^{10}
3. $\lim _{k \rightarrow \infty} A^{k}\left(\vec{v}_{1}+4 \vec{v}_{2}\right)$
