In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible	impossible
\bigcirc	$\bigcirc \quad$$Q(\vec{x})=\vec{x}^{T} A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v})=0$, where \vec{v} is an eigenvector of A.

The maximum value of $Q(\vec{x})=a x_{1}^{2}+b x_{2}^{2}+c x_{3}^{2}$, where $a>b>c$, for $\vec{x} \in \mathbb{R}^{3}$, subject to $\|\vec{x}\|=1$, is not unique.
\bigcirc
The location of the maximum value of $Q(\vec{x})=a x_{1}^{2}+b x_{2}^{2}+c x_{3}^{2}$, where $a>b>c$, for $\vec{x} \in \mathbb{R}^{3}$, subject to $\|\vec{x}\|=1$, is not unique.
A is 2×2, the algebraic multiplicity of eigenvalue $\lambda=0$ is 1 , and $\operatorname{dim}\left(\operatorname{Col}(A)^{\perp}\right)$ is equal to 0 .
\bigcirc

Stochastic matrix P has zero entries and is regular.
\square A is a square matrix that is not diagonalizable, but A^{2} is diagonalizable.

The map $T_{A}(\vec{x})=A \vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m<n$.
2. Transform $T_{A}=A \vec{x}$ reflects points in \mathbb{R}^{2} through the line $y=2+x$. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.
3. Fill in the blanks.
(a) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^{2} clockwise by $\pi / 2$ radians about the origin, then reflects them through the line $x_{1}=x_{2}$. What is the value of $\operatorname{det}(A)$? \square
(b) B and C are square matrices with $\operatorname{det}(B C)=-5$ and $\operatorname{det}(C)=2$. What is the value of $\operatorname{det}(B) \operatorname{det}\left(C^{4}\right) ?$ \square
(c) A is a 6×4 matrix in RREF, and $\operatorname{rank}(A)=4$. How many different matrices can you construct that meet these criteria? \square
(d) $T_{A}=A \vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, projects points onto the line $x_{1}=x_{2}$. What is an eigenvalue of A equal to? \qquad
(e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to? \square
(f) If A is 30×12 and $A \vec{x}=\vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30}, the dimension of $\operatorname{Null} A$ is \qquad
4. A is a 2×2 matrix whose nullspace is the line $x_{1}=x_{2}$, and $C=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. Sketch the nullspace of $Y=A C$.
5. Construct an SVD of $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. Use your SVD to calculate the condition number of A.

