In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible	impossibl	e
0	0	$Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A .
\bigcirc	\bigcirc	The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.
0	0	The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where $a > b > c$, for $\vec{x} \in \mathbb{R}^3$, subject to $ \vec{x} = 1$, is not unique.
0	0	A is 2 × 2, the algebraic multiplicity of eigenvalue $\lambda = 0$ is 1, and $\dim(\operatorname{Col}(A)^{\perp})$ is equal to 0.
\bigcirc	\bigcirc	Stochastic matrix P has zero entries and is regular.
\bigcirc	\bigcirc	A is a square matrix that is not diagonalizable, but A^2 is diagonalizable.
\bigcirc	\bigcirc	The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and $m < n$.

2. Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

- 3. Fill in the blanks.
 - (a) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, is a linear transform that first rotates vectors in \mathbb{R}^2 clockwise by $\pi/2$ radians about the origin, then reflects them through the line $x_1 = x_2$. What is the value of det(A)?
 - (b) *B* and *C* are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?
 - (c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?
 - (d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2 \times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?
 - (e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?
 - (f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is .
- 4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.