Learning Objectives

Learning objectives articulate what students are expected to be able to do in a course. This course has course-level learning objectives that are stated in the syllabus, and section-level learning objectives that are stated below.

Course-Level Learning Objectives

Course-level learning objectives were stated in the syllabus. Throughout this course, its expected that students will be able to do the following.
A) Construct, or give examples of, mathematical expressions that involve vectors, matrices, and linear systems of linear equations.
B) Evaluate mathematical expressions to compute quantities that deal with linear systems and eigenvalue problems.
C) Analyze mathematical statements and expressions (for example, to assess whether a particular statement is accurate, or to describe solutions of systems in terms of existence and uniqueness).
D) Write logical progressions of precise mathematical statements to justify and communicate your reasoning.
E) Apply linear algebra concepts to model, solve, and analyze real-world situations.

Section-Level Learning Objectives

Section-level learning objectives pertain to specific sections of our textbook. They state what students are expected to be able to do specifically for the topics in each section.

1 Linear Equations

1.1 Systems of Linear Equations

1. Apply elementary row operations to solve linear systems of equations.
2. Characterize a linear system in terms of the number of solutions, and whether the system is consistent or inconsistent.
3. Express a set of linear equations as an augmented matrix.

1.2 Row Reduction and Echelon Forms

1. Characterize a linear system in terms of the number of leading entries, free variables, pivots, pivot columns, pivot positions.
2. Apply the row reduction algorithm to reduce a linear system to echelon form, or reduced echelon form.
3. Apply the row reduction algorithm to compute the coefficients of a polynomial.

1.3 Vector Equations

1. Apply geometric and algebraic properties of vectors in \mathbb{R}^{n} to compute vector additions and scalar multiplications.
2. Characterize a set of vectors in terms of linear combinations, their span, and how they are related to each other geometrically.
3. Characterize the solutions to a linear system in terms of linear combinations and span.

1.4 The Matrix Equation

1. Compute matrix-vector products.
2. Express linear systems as vector equations and matrix equations.
3. Characterize linear systems and sets of vectors using the concepts of span, linear combinations, and pivots.

1.5 Solution Sets of Linear Systems

1. Express the solution set of a linear system in parametric vector form.
2. Provide a geometric interpretation to the solution set of a linear system.
3. Characterize homogeneous linear systems using the concepts of free variables, span, pivots, linear combinations, and echelon forms.

1.7 Linear Independence

1. Characterize a set of vectors and linear systems using the concept of linear independence.
2. Construct dependence relations between linearly dependent vectors.

1.8 An Introduction to Linear Transforms

1. Construct and interpret linear transformations in \mathbb{R}^{2} or \mathbb{R}^{3} (for example, interpret a linear transform as a projection, or as a shear).
2. Characterize linear transforms using the concepts of existence and uniqueness.

1.9 Linear Transforms

1. Identify and construct linear transformations of a matrix.
2. Characterize linear transformations as onto, one-to-one.
3. Solve linear systems represented as linear transforms.
4. Express linear transforms in other forms, such as as matrix equations, and vector equations.

2 Matrix Algebra

2.1 Matrix Operations

1. Apply matrix algebra, the matrix transpose, and the zero and identity matrices, to solve and analyze matrix equations

2.2 Inverse of a Matrix

1. Apply the formal definition of an inverse, and its algebraic properties, to solve and analyze linear systems.
2. Compute the inverse of an $n \times n$ matrix, and use it to solve linear systems.

2.3 Invertible Matrices

1. Characterize the invertibility of a matrix using the Invertible Matrix Theorem.

2.5 Matrix Factorizations

1. Compute an $L U$ factorization of a matrix.
2. Apply the $L U$ factorization to solve systems of equations.

2.8 Subspaces of \mathbb{R}^{n}

1. Determine whether a set is a subspace.
2. Determine whether a vector is in a particular subspace, or find a vector in that subspace.
3. Construct a basis for a subspace (for example, a basis for $\operatorname{Col}(\mathrm{A})$).

2.9 Dimension and Rank

1. Calculate the coordinates of a vector in a given basis.
2. Characterize a subspace using the concept of dimension.
3. Characterize a matrix using the concepts of rank, column space, null space.
4. Apply the Rank, Basis, and Matrix Invertibility theorems to describe matrices and subspaces.

3 Determinants

3.1 Introduction to Determinants

1. Compute determinants of $n \times n$ matrices using a cofactor expansion.
2. Apply theorems to compute determinants of matrices that have particular structures.

3.2 Properties of the Determinant

1. Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
2. Use determinants to determine whether a square matrix is invertible.
