Midterm 1, 1:30, Math 1554, Spring 2020

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

$$
\begin{aligned}
& \text { First Name ___ Last Name ___ @TID Number: __gatech.edu }
\end{aligned}
$$

Section Number (e.g. A4, M2, QH3, etc.) \qquad TA Name \qquad

Circle your instructor:
Dr. Belegradek, Dr. Mayer, Dr. Barone

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Electronic devices are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.

Math 1554, Midterm 1, 1:30. Your initials:
You do not need to justify your reasoning for questions on this page.

1. (7 points) Suppose A, B are matrices and b, u, v are vectors such that their products in the questions below are defined, and that matrix A is $m \times n$. Select true if the statement is true for all A, B, b, u, v. Otherwise, select false.
i) If columns of A span \mathbb{R}^{m}, then $A x=b$ is consistent for every b.
ii) If A is a 6×4 matrix with 4 pivotal rows, then $A x=0$ has infinitely many solutions.
iii) If A has fewer rows than columns, then $A x=b$ has infinitely many solutions.
iv) If $A x=b$ is consistent, then so is $A x=-b$.
v) If u, v are linearly dependent vectors, then $A u, A v$ are also linearly dependent.
vi) If u, v are linearly independent vectors, then so are $u+v, u$.
vii) If A, B are matrices and $A B=0$, then either $A=0$ or $B=0$.
2. (3 points) Indicate whether the following situations are possible or impossible.
i) $\quad A$ is a 5×3 matrix with linearly independent columns.
ii) $\quad A$ and B are 2×2 matrices, but $A B \neq B A$.
iii) Matrix A has a pivot in the last column and the system \bigcirc $A \vec{x}=\vec{b}$ is consistent.

Math 1554, Midterm 1, 1:30. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (2 points) Suppose $A=\left(\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right)$. On the grid below, sketch
a) any non-zero vector that is a solution to $A \vec{x}=\overrightarrow{0}$,
b) the span of the columns of A.

4. (6 points) If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible. You do not need to justify your reasoning.
(a) A 3×3 matrix A in RREF whose only pivots are in the second and third columns.

$$
A=(
$$

(b) A 3×2 matrix A in RREF such that $A x=b$ is consistent for every b in \mathbb{R}^{3}.

$$
A=(
$$

(c) The 2×2 matrix A such that the linear transformation $T(x)=A x$ first rotates counterclockwise by $\frac{\pi}{2}$ radians and then reflects through the line $x_{2}=0$.

$$
A=(
$$

Math 1554, Midterm 1, 1:30. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (12 points) Fill in the blanks.
(a) If A is 5×7 and has exactly 4 pivots, how many free variables does $A \vec{x}=\overrightarrow{0}$ have?
\square
(b) If A is an $m \times n$ matrix with $m<n$, and $A \vec{x}=\vec{b}$ has a solution for all \vec{b}, how many pivot columns does A have?
\square
(c) Consider the following linear transformation.

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-2 x_{2}, 3 x_{2}, 3 x_{1}-6 x_{2}\right)
$$

- The domain of T is \square
- The codomain of T is \square
- The image of $\vec{x}=\binom{1}{0}$ under $T(\vec{x})$ is $($.
- The standard matrix A associated to T is

$$
A=(\quad)
$$

- A particular solution to $T(\vec{x})=\left(\begin{array}{l}4 \\ 3 \\ 0\end{array}\right)$ is $\vec{x}=()$.
- Is T onto (yes or no)? \square
(d) Suppose A, B, and C are matrices. A is size $5 \times 3, C$ is size 5×7, and $A B=C$.
- How many rows does B have? \square
- How many columns does B have?
(e) List all possible values of k such that $A B=B A$.

$$
A=\left(\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right), \quad B=\left(\begin{array}{ll}
3 & 0 \\
k & 3
\end{array}\right), \quad k=\square
$$

Math 1554, Midterm 1, 1:30. Your initials:
6. (5 points) Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
1 & -1 & 0 & -4 & 2 \\
0 & 0 & 0 & 2 & 2
\end{array}\right), \vec{b}=\binom{8}{6}
$$

(a) Row reduce the augmented matrix $(A \mid \vec{b})$ to RREF.
(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation. Show your work.

Math 1554, Midterm 1, 1:30. Your initials:
7. (5 points) For what value(s) of t is \vec{b} in the plane spanned by \vec{a}_{1} and \vec{a}_{2} ? Show your work.

$$
\vec{a}_{1}=\left(\begin{array}{l}
1 \\
0 \\
t
\end{array}\right), \quad \vec{a}_{2}=\left(\begin{array}{c}
0 \\
1 \\
-2 t
\end{array}\right), \quad \vec{b}=\left(\begin{array}{c}
t \\
1 \\
3
\end{array}\right) ; \quad t=\square
$$

