Midterm 1, 1:30, Math 1554, Spring 2020

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

GTID Number: _____

Student GT Email Address: @gatech.edu

Section Number (e.g. A4, M2, QH3, etc.) _____ TA Name _____

Circle your instructor: Dr. Belegradek, Dr. Mayer, Dr. Barone

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Electronic devices are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.

Math 1554, Midterm 1, 1:30. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (7 points) Suppose A, B are matrices and b, u, v are vectors such that their products in the questions below are defined, and that matrix A is $m \times n$. Select true if the statement is **true** for all A, B, b, u, v. Otherwise, select **false**.

		true	false
i)	If columns of A span \mathbb{R}^m , then $Ax = b$ is consistent for every b.	\bigcirc	\bigcirc
ii)	If <i>A</i> is a 6×4 matrix with 4 pivotal rows, then $Ax = 0$ has infinitely many solutions.	0	\bigcirc
iii)	If <i>A</i> has fewer rows than columns, then $Ax = b$ has infinitely many solutions.	\bigcirc	\bigcirc
iv)	If $Ax = b$ is consistent, then so is $Ax = -b$.	\bigcirc	\bigcirc
v)	If u, v are linearly dependent vectors, then Au, Av are also linearly dependent.	0	\bigcirc
vi)	If u, v are linearly independent vectors, then so are $u + v, u$.	\bigcirc	\bigcirc
vii)	If A, B are matrices and $AB = 0$, then either $A = 0$ or $B = 0$.	\bigcirc	\bigcirc

2. (3 points) Indicate whether the following situations are possible or impossible.

		possible	impossible
i)	A is a 5×3 matrix with linearly independent columns.	\bigcirc	\bigcirc
ii)	A and B are 2×2 matrices, but $AB \neq BA$.	\bigcirc	\bigcirc
iii)	Matrix <i>A</i> has a pivot in the last column and the system $A\vec{x} = \vec{b}$ is consistent.	\bigcirc	\bigcirc

Math 1554, *Midterm* 1, 1:30. *Your initials:* _____ *You do not need to justify your reasoning for questions on this page.*

- 3. (2 points) Suppose $A = \begin{pmatrix} 1 & 3 \\ 1 & 3 \end{pmatrix}$. On the grid below, sketch
 - a) any non-zero vector that is a solution to $A\vec{x} = \vec{0}$,
 - b) the span of the columns of *A*.

- 4. (6 points) If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write *not possible*. You do not need to justify your reasoning.
 - (a) A 3×3 matrix A in RREF whose only pivots are in the second and third columns.

(b) A 3×2 matrix A in RREF such that Ax = b is consistent for every b in \mathbb{R}^3 .

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

(c) The 2×2 matrix A such that the linear transformation T(x) = Ax first rotates counterclockwise by $\frac{\pi}{2}$ radians and then reflects through the line $x_2 = 0$.

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Math 1554, *Midterm* 1, 1:30. *Your initials:* ______ *You do not need to justify your reasoning for questions on this page.*

- 5. (12 points) Fill in the blanks.
 - (a) If *A* is 5×7 and has exactly 4 pivots, how many free variables does $A\vec{x} = \vec{0}$ have?
 - (b) If *A* is an $m \times n$ matrix with m < n, and $A\vec{x} = \vec{b}$ has a solution for all \vec{b} , how many pivot columns does *A* have?
 - (c) Consider the following linear transformation.

$$T(x_1, x_2) = (3x_1 - 2x_2, 3x_2, 3x_1 - 6x_2)$$
• The domain of *T* is ______.
• The codomain of *T* is ______.
• The image of $\vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ under $T(\vec{x})$ is $\begin{pmatrix} \\ \\ \\ \end{pmatrix}$.
• The standard matrix *A* associated to *T* is

$$A = \begin{pmatrix} \\ \\ \\ \\ \\ \\ \end{pmatrix}$$
.
• A particular solution to $T(\vec{x}) = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}$ is $\vec{x} = \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$.
• Is *T* onto (yes or no)? ______.
• Is *T* one to one (yes or no)? ______.

- (d) Suppose A, B, and C are matrices. A is size 5×3 , C is size 5×7 , and AB = C.
 - How many rows does *B* have?
 - How many columns does *B* have?
- (e) List all possible values of k such that AB = BA.

$$A = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 0 \\ k & 3 \end{pmatrix}, \qquad k = \boxed{}$$

Math 1554, Midterm 1, 1:30. Your initials: _____

6. (5 points) Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 1 & -1 & 0 & -4 & 2 \\ 0 & 0 & 0 & 2 & 2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$$

(a) Row reduce the augmented matrix $(A | \vec{b})$ to RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation. Show your work.

Math 1554, Midterm 1, 1:30. Your initials: _____

7. (5 points) For what value(s) of *t* is \vec{b} in the plane spanned by \vec{a}_1 and \vec{a}_2 ? Show your work.

$$\vec{a}_1 = \begin{pmatrix} 1\\0\\t \end{pmatrix}, \quad \vec{a}_2 = \begin{pmatrix} 0\\1\\-2t \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} t\\1\\3 \end{pmatrix}; \quad t = \boxed{}$$