Midterm 1, 6:00, Math 1554, Spring 2020

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

First Name _____ Last Name _____

GTID Number: _____

Student GT Email Address: @gatech.edu

Section Number (e.g. A4, M2, QH3, etc.) _____ TA Name _____

Circle your instructor: Dr. Belegradek, Dr. Mayer, Dr. Barone

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Electronic devices are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.

Math 1554, Midterm 1, 6:00. Your initials:

You do not need to justify your reasoning for questions on this page.

1. (7 points) Suppose A, B are matrices and b, u, v are vectors such that their products in the questions below are defined, and that matrix A is $m \times n$. Select true if the statement is **true** for all A, B, b, u, v. Otherwise, select **false**.

		true	false
i)	If $Ax = b$ has a unique solution, then A has independent columns.	\bigcirc	\bigcirc
ii)	If $Ax = b$ has at least two solutions, then $Ax = b$ has infinitely many solutions.	\bigcirc	0
iii)	If $Ax = 0$ has a unique solution, then so does $Ax = b$.	\bigcirc	\bigcirc
iv)	If $Ax = -b$ is consistent, then so is $Ax = b$.	\bigcirc	\bigcirc
v)	If $Au = 0 = Av$, then $2u - 3v$ is a solution of $Ax = 0$.	\bigcirc	\bigcirc
vi)	If a vector u lies in the span of the vectors v, b , then u, v, b are linearly dependent.	0	\bigcirc
vii)	If u, v are linearly dependent vectors, then Au, Av are also linearly dependent.	\bigcirc	\bigcirc

2. (3 points) Indicate whether the following situations are possible or impossible.

		possible	impossible
i)	A is a 4×5 matrix with linearly dependent columns.	\bigcirc	\bigcirc
ii)	A and B are 2×2 matrices with $AB = BA$.	\bigcirc	\bigcirc
iii)	Matrix <i>A</i> has linearly independent columns and $Ax = 0$ has a unique solution.	\bigcirc	0

Math 1554, *Midterm* 1, 6:00. *Your initials:* _____ *You do not need to justify your reasoning for questions on this page.*

- 3. (2 points) Suppose $A = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$. On the grid below, sketch
 - a) any non-zero vector that is a solution to $A\vec{x} = \vec{0}$,
 - b) the span of the columns of *A*.

- 4. (6 points) If possible, write down an example of a matrix or vector with the following properties. If it is not possible to do so, write *not possible*.
 - (a) A 3×3 matrix A in RREF such that Ax = 0 has exactly two free variables.

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

(b) A 3×2 matrix A in RREF such that the linear map T(x) = Ax is onto.

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

(c) The 2×2 matrix A such that the linear transformation T(x) = Ax first projects onto the x_1 axis, and then reflects about the line $x_2 = x_1$.

$$A = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

Math 1554, Midterm 1, 6:00. Your initials: You do not need to justify your reasoning for questions on this page.

- 5. (12 points) Fill in the blanks.
 - (a) If A is 7×5 and has exactly 4 pivots, how many free variables does $A\vec{x} = \vec{0}$ have?
 - (b) If A is an $m \times n$ matrix with m < n, and $A\vec{x} = \vec{b}$ has a solution for all \vec{b} , how many pivot columns does A have?
 - (c) Consider the following linear transformation.

- (d) Suppose A, B, and C are matrices. A is size 3×5 , C is size 3×4 , and AB = C.

 - How many columns does *B* have?
- (e) List all possible values of k such that AB = BA.

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ k & 2 \end{pmatrix}, \qquad k = \boxed{}$$

Math 1554, Midterm 1, 6:00. Your initials: _____

6. (5 points) Consider the linear system $A\vec{x} = \vec{b}$, where

$$A = \begin{pmatrix} 4 & -4 & 0 & 0 & -4 \\ 0 & 1 & 0 & 4 & -2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 8 \\ 5 \end{pmatrix}$$

(a) Express the augmented matrix $(A | \vec{b})$ in RREF.

(b) Write the set of solutions to $A\vec{x} = \vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation. Show your work.

Math 1554, Midterm 1, 6:00. Your initials:

7. (5 points) For what value(s) of *q* is \vec{x}_3 in the span of \vec{x}_1 and \vec{x}_2 ? Show your work.

$$\vec{x}_1 = \begin{pmatrix} 0\\1\\2q \end{pmatrix}, \quad \vec{x}_2 = \begin{pmatrix} 1\\0\\q \end{pmatrix}, \quad \vec{x}_3 = \begin{pmatrix} -q\\-2\\3 \end{pmatrix}; \quad q = \boxed{\qquad}$$