Midterm 1, 6:00, Math 1554, Spring 2020

PLEASE PRINT YOUR NAME CLEARLY IN ALL CAPITAL LETTERS

$$
\begin{aligned}
& \text { First Name ___ Last Name ___ @TID Number: __ } \quad \\
& \text { Student GT Email Address: } \quad \text { @gatech.edu }
\end{aligned}
$$

Section Number (e.g. A4, M2, QH3, etc.) \qquad TA Name \qquad

Circle your instructor:
Dr. Belegradek, Dr. Mayer, Dr. Barone

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Electronic devices are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.

Math 1554, Midterm 1, 6:00. Your initials: \qquad
You do not need to justify your reasoning for questions on this page.

1. (7 points) Suppose A, B are matrices and b, u, v are vectors such that their products in the questions below are defined, and that matrix A is $m \times n$. Select true if the statement is true for all A, B, b, u, v. Otherwise, select false.

true false

i) If $A x=b$ has a unique solution, then A has independent columns.
ii) If $A x=b$ has at least two solutions, then $A x=b$ has infinitely many solutions.
iii) If $A x=0$ has a unique solution, then so does $A x=b$.
iv) If $A x=-b$ is consistent, then so is $A x=b$.
v) If $A u=0=A v$, then $2 u-3 v$ is a solution of $A x=0$.
vi) If a vector u lies in the span of the vectors v, b, then u, v, b are linearly dependent.
vii) If u, v are linearly dependent vectors, then $A u, A v$ are also linearly \bigcirc dependent.
2. (3 points) Indicate whether the following situations are possible or impossible.
possible impossible
i) $\quad A$ is a 4×5 matrix with linearly dependent columns.
ii) $\quad A$ and B are 2×2 matrices with $A B=B A$.
iii) Matrix A has linearly independent columns and $A x=0$ has a unique solution.

Math 1554, Midterm 1, 6:00. Your initials:
You do not need to justify your reasoning for questions on this page.
3. (2 points) Suppose $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right)$. On the grid below, sketch
a) any non-zero vector that is a solution to $A \vec{x}=\overrightarrow{0}$,
b) the span of the columns of A.

4. (6 points) If possible, write down an example of a matrix or vector with the following properties. If it is not possible to do so, write not possible.
(a) A 3×3 matrix A in RREF such that $A x=0$ has exactly two free variables.

$$
A=(
$$

(b) A 3×2 matrix A in RREF such that the linear map $T(x)=A x$ is onto.

$$
A=(
$$

(c) The 2×2 matrix A such that the linear transformation $T(x)=A x$ first projects onto the x_{1} axis, and then reflects about the line $x_{2}=x_{1}$.

$$
A=(
$$

Math 1554, Midterm 1, 6:00. Your initials:
You do not need to justify your reasoning for questions on this page.
5. (12 points) Fill in the blanks.
(a) If A is 7×5 and has exactly 4 pivots, how many free variables does $A \vec{x}=\overrightarrow{0}$ have?
\square
(b) If A is an $m \times n$ matrix with $m<n$, and $A \vec{x}=\vec{b}$ has a solution for all \vec{b}, how many pivot columns does A have?
\square
(c) Consider the following linear transformation.

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}-x_{3}, x_{1}+2 x_{3}\right) .
$$

- The domain of T is \square
- The codomain of T is \square
- The image of $\vec{x}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ under $T(\vec{x})$ is () .
- A particular solution to $T(\vec{x})=\binom{2}{3}$ is $\vec{x}=()$.
- The standard matrix A associated to T is

$$
A=(\quad)
$$

- Is T onto (yes or no)?
- Is T one to one (yes or no)?
\square
(d) Suppose A, B, and C are matrices. A is size $3 \times 5, C$ is size 3×4, and $A B=C$.
- How many rows does B have? \square
- How many columns does B have?
(e) List all possible values of k such that $A B=B A$.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
2 & 0 \\
k & 2
\end{array}\right), \quad k=\square
$$

Math 1554, Midterm 1, 6:00. Your initials:
6. (5 points) Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
4 & -4 & 0 & 0 & -4 \\
0 & 1 & 0 & 4 & -2
\end{array}\right), \vec{b}=\binom{8}{5}
$$

(a) Express the augmented matrix $(A \mid \vec{b})$ in RREF.
(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation. Show your work.

Math 1554, Midterm 1, 6:00. Your initials: \qquad
7. (5 points) For what value(s) of q is \vec{x}_{3} in the span of \vec{x}_{1} and \vec{x}_{2} ? Show your work.

$$
\vec{x}_{1}=\left(\begin{array}{c}
0 \\
1 \\
2 q
\end{array}\right), \quad \vec{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
q
\end{array}\right), \quad \vec{x}_{3}=\left(\begin{array}{c}
-q \\
-2 \\
3
\end{array}\right) ; \quad q=\square
$$

