In-Class Midterm 1 Review, Math 1554

1. Consider the matrix A and vectors \vec{b}_{1} and \vec{b}_{2}.

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right), \quad \vec{b}_{1}=\binom{-2}{-4}, \quad \vec{b}_{2}=\binom{-1}{2}
$$

If possible, on the grids below, draw
(i) the two vectors and the span of the columns of A,
(ii) the solution set of $A \vec{x}=\vec{b}_{1}$.
(iii) the solution set of $A \vec{x}=\vec{b}_{2}$.
(i) \vec{b}_{1}, \vec{b}_{2}, column span

ii) solution set $A x=\vec{b}_{1}$

iii) solution set $A x=\vec{b}_{2}$

2. Indicate true if the statement is true, otherwise, indicate false. For the statements that are false, give a counterexample.
true false counterexample
a) If $A \in \mathbb{R}^{M \times N}$ has linearly dependent columns, then the columns of A cannot span \mathbb{R}^{M}.
b) If there are some vectors $\vec{b} \in \mathbb{R}^{M}$ that are not in the range of $T(\vec{x})=A \vec{x}$, then there cannot be a pivot in every row of A.
c) If the transform $\vec{x} \rightarrow A \vec{x}$ projects points in \mathbb{R}^{2} onto a line that passes through the origin, then the transform cannot be one-to-one.
3. If possible, write down an example of a matrix with the following properties. If it is not possible to do so, write not possible.
(a) A linear system that is homogeneous and has no solutions.
(b) A standard matrix A associated to a linear transform, T. Matrix A is in RREF, and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one.
(c) A 3×7 matrix A, in RREF, with exactly 2 pivot columns, such that $A \vec{x}=\vec{b}$ has exactly 5 free variables.
4. Consider the linear system $A \vec{x}=\vec{b}$, where

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 7 & 0 & -5 \\
0 & 1 & 1 & 0 & 3 \\
0 & 0 & 1 & 0 & 0
\end{array}\right), \vec{b}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

(a) Express the augmented matrix $(A \mid \vec{b})$ in RREF.
(b) Write the set of solutions to $A \vec{x}=\vec{b}$ in parametric vector form. Your answer must be expressed as a vector equation.

