Introduction

Tuesday, February 8, 2022 11:26 PM

Hello everyone! My name is Gregory Elias. | was a student in MATH 1554 for the fall 2021 semester.

| realized early on that MATH 1554 was really fast paced and it was hard to keep track of class notes. That's why | painstakingly wrote all of my
professor's lecture notes and all studio worksheet questions & answers in a OneNote/LaTeX format and compiled them into a PDF so that you -
the reader - never miss material from any lecture or studio.

Enjoy!

If you have any questions, email me at: elias.gregory.w@gmail.com or gelias7 @gatech.edu

P.S. Great power comes great responsibility. Don’t use this as an alternative of attending lecture, it's really important that you do so, especially in
this class!



Unit 1

Saturday, November 13, 2021 8:49 PM

Material Covered:
Chapter 1: Linear Equations in Linear Algebra
e Section 1.1 : Systems of Linear Equations
¢ Section 1.2 : Row Reduction and Echelon Forms
e Section 1.3 : Vector Equations
e Section 1.4 : The Matrix Equation
e Section 1.5 : Solution Sets of Linear Systems
e Section 1.7 : Linear Independence
e Section 1.8 : An Introduction to Linear Transforms
e Section 1.9 : Linear Transforms
Chapter 2: Matrix Algebra
e Section 2.1 : Matrix Operations




Lecture 1

Monday, August 23, 2021 3:49 PM

General Information:
e Professor: Victor Vilaga Da Rocha
O School Email: vrocha3@gatech.edu
O Personal Email: v.vilaca.da.rocha@gmail.com
e Use MyLab for assignments and textbook

Notes:

Section 1.1: Systems of Linear Equations
Linear Equations:
¢ Alinear equation has the form:
0 A X1+ AXo+...+AXn=b
= A; ... A, are coefficients
= X;i..X,arevariables
= "n"jis the dimension

e Examples:

O In2D:6x1+4x2=5
= Alinein 2D

O In3D91+7x2+2x3=8
= Aplanein3D

O *Non linear equations:
" X2+ X7 =4
" In(x) + 1/x + x143 = eX
= 4Ax1x2 =3

Systems of Linear Equations:

¢ A system of linear equations have more than one equation. For example:
0 X1+15x+mx3=4
o 5X;+ 7x3=5

¢ A system can have a unique solution, no solution, or an infinite number of solutions.
o Two lines that intersect have one solution
o Two parallel lines that have different heights have no solution
o Two parallel lines that have the same height have infinitely many solutions.

e Aequation AiX1 + AxX2 + AsXs = b defines a plane in R3.
O The solution to a system of 3 equations is the set of intersections of the planes.

Row Reduction by Elementary Row Operations:
1. (Replacement/Addition) Add a multiple of one row to another
2. (Interchange) Interchange two rows
3. (Scaling) Multiply a row by a non-zero scalar

Example:
X1 - 2X2+ X3=0 |[R;
2X; - 8X3=8 |R;
5X1 - 5X3=10|Rs
X1 - 7X3=8|R3 & R+ Ry
2X; - 8X3=8|~
X1 - X3=2|R3& 1/cR;
X1 - 7X3=8 |R3 ¢ R3-R;
Xo - AX3=4|~
6X3 = -6 | Ry & /4Ry

>X3=-1
- by substitution: X, =0, X; =1



Studio 1

Tuesday, August 24, 2021 12:34 PM

TA: Jad Salem
e Email: Jsalem7@gatech.edu
e Office Hours: ?

Def. A system of equations is consistent if there is at least 1 solution

No solutions:

X+Y=1|Inconsistent

X+Y=2|Sol: UND

One Solution:

2X + 4Y = 2 | Consistent

3X+4Y=2|Sol:x=0,y=0.5

Infinite Solutions:

X+Y=1 Consistent

2X+2Y=2|Sol:y=1-x




Lecture 2

Wednesday, August 25, 2021 3:33 PM

Notes:

Augmented Matrices
It is redundant to write x1, x2, x3 again and again, so we rewrite systems using matrices. For example,
X1— 2X2 + X3= 0
2X2 - 8X3 =8
5X1 - 5X3 =10
can be written as the augmented matrix,
1 -2 1 0
0 2 -8 8
5 0 -51]10

The vertical line reminds us that the first three columns are the coefficients to our variables x1, X2, and Xs.

Consistent Systems and Row Equivalence
Definition (Consistent)
¢ Alinear system is consistent if it has at least one solution.

Definition (Row Equivalence)
e Two matrices are row equivalent if a sequence of elementary row operations transforms one matrix into the other.

Note: if the augmented matrices of two linear systems are row equivalent, then they have the same solution set.

Fundamental Questions

Two questions that we will revisit many times throughout our course.
1. Does a given linear system have a solution? (Is consistent)
2. Ifitis consistent, is the solution unique?
3. How do you find the solutions?

Section 1.2: Row Reduction and Echelon Forms
A rectangular matrix is in echelon form if
1. All zero rows (if any are present) are at the bottom.
2. The first non-zero entry (or leading entry) of a row is to the right of any leading entries in the row above it (if any).
3. All elements below a leading entry (if any) are zero.
A matrix in echelon form is in row reduced echelon form (RREF) if
1. All leading entries, if any, are equal to 1.
2. Leading entries are the only nonzero entry in their respective column.

0 .
( OI) not in Echelon Form.
(0 m\.
B= (0 OI} in Echelon Form.
0 .
( 1I> not in Echelon Form.

D= (1 (1)I) in (Row Reduced) Echelon Form

Example of a Matrix in Echelon Form

0 m =* k  k ok ok ok ok %k

0 0 0 ] * ok * k% *

0 OO OO 0O 0 m * =

0 00 OO 0O 0O 0 m=*

0 00 OO 0O O 0O 0 =
To be in RREF:

1. m=1

2. Everything above m must be 0.

Example of RREF:
_[1 0 EF
A=y 3l
_[0 0 RREF
B_[o 0

0 (NO)
c=|3

0
D=[0 6 3 0] EF
_[1 17 0 RREF
E=[y ¢ 4

Definition: Pivot Position, Pivot Column
¢ A pivot position in a matrix 4 is a location in A that corresponds to a leading 1 in the reduced echelon form of A.
¢ A pivot column is a column of A that contains a pivot position.

Example 2: Express the matrix in row reduced echelon form and identify the pivot columns.




0 -3 —6 | 4] |Ry,Ry,Rs
-1 -2 -11|3
-2 -3 0 |3
—2 =3 0 |3]|RieRs
-1 -2 —-1|3
0 -3 —6 |4
-2 =3 0 3_ R2<—2R2—R1
0 -1 -213
4.

(-2 -3 0 | 3|Rs«<Rs—3R:
0 -1 -2 3
0 0 o0 |-5

Row Reduction Algorithm
e The algorithm we used in the previous example produces a matrix in RREF.

Step 1a: | Swap the 1st row with a lower one so the leftmost nonzero entry is in the 1st row

Step 1b: |Scale the 1st row so that its leading entry is equal to 1

Step 1c: | Use row replacement so all entries below this 1 are 0

Step 2a: | Swap the 2nd row with a lower one so that the leftmost nonzero entry below 1st row is in the 2nd row

etc.... | Now the matrix is in echelon form, with leading entries equal to 1.

Last step: | Use row replacement so all entries above each leading entry are 0, starting from the right.




Studio 2

Thursday, August 26, 2021 12:30 PM

General Information:
Office hours: 4-5 Tuesday (MathLab)

Notes:

X+3y=2
3x+2y=1

1 3 2 .
(3 5 1%Augmented Matrix

1 3 - .
(3 2%CoefﬁuentMatrlx

Pivot: The first non-zero entry in a row.
Worksheet 1.2

1a.) What are some of the differences between echelon form and row reduced echelon form ((RREF)? List at least three.
1. All pivots =1 in RREF
2. Pivots are the only nonzero entry in a column in RREF
3. RREFis unique

1b.) How can we use row reduced to determine whether an augmented matrix corresponds to a consistent system?
1. Reduce to RREF & if there is a pivot in the rightmost column (in an augment matrix), it is inconsistent.

2.) Which matrices are in RREF? In echelon form?

A=(0 1 2 3){RREF}
1 0 0 2
B=<O 1 4 0>{EF}
0 0 0 1
(01 0 1
C‘(o 0 5 5{)EF}

3.) List all 3 X 2 matricies in RREF. Use * for entries that can be arbitrary.

1 0 00 1 = 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

4.) Indicate whether the statements are true or false
a.) A linear system, whose 3 X 5 coefficient matrix has three pivotal columns, must be consistent
True, every row has a pivot
b.) The echelon form of a coefficient matrix is unique
False, only row reduced echelon form is unique; there are infinitely many echelon forms of a singular matrix.

5.) For any three distinct points in the plane, no two on a vertical line, there is a second degree polynomial p(t) = ao + a1t + a,t? that passes
through (1,12), (2,15), and (3,17). That is, solve

p(l)=12=ap+ a1+ az

p(2) =15=ap + 2a; + 4a;

p(3)=16=ap+ 3a; +9a;

1 1 1| 12] Ry, Rz, Rs
1 2 4|15

1 3 9 |16

1 1 1] 12] R:—Ri
01 3|3 Rs— Ri
0 2 8| 4]

1 0 -2| 9 —(1/2Rs)
01 3| 3 —R3— R
0 0 -2 2R3+ R,
10 0] 7] Ri— Rz
01 0] 6 Rs — 2R,
00 1[-1]

10 0] 7] Ao=7

010]| 6 A1=6

00 1[-1] Ay=—1




Lecture 3

Friday, August 27, 2021 3:26 PM

General Information:
¢ Label pages in homework/exploration

Notes:

Basic and Free Variables
Consider the augmented matrix

la | b=

S O =
SO w
(=N ]
(=R
=]
o U1

The leading one's are in first, third, and fifth columns. So:

e The pivot variables of the system AX = b are X1, X3, and Xs.
e The free variables are x, and x4. Any choice of the free variables leads to a solution of the system.

Note that A does not have basic or free variables. Systems have variables.
Existence and Uniqueness
A linear system is consistent if and only if (exactly when) the last column of the augmented matrix does not have a pivot. In other words, the

RREF of the augmented matrix does not have the form:

0O 0 0..01] 1D

Moreover, if a linear system is consistent, then it has
1. aunique solution if and only if there are no free variables.
2. infinitely many solutions that are parameterized by free variables.

Section 1.3: Vector Equations

Think about the algebra in linear algebra.
e To do this, we need to introduce n-dimensional space R", and vectors inside it.

R is a number line.
R?is a plane.
Example:

p=(32)

-2

Vectors
e Also think about R" as vectors, with given length and direction

Vector Algebra
- Ex.

- <u1> N <V1>
u= , v =
Uy VU2
1. Scalar Multiple:

— Cuq
cu=
cu,

2. Vector Multiple:
u;+v
a+a=<1 1>
U, + v,
3. Pentagon Rule

Two vectors added together will be the length of the line that connects the beginning of the first vector and the end of the second
vector.

Linear Combinations and Span
1. Given vectors V7, U5, ... U, € R", and scalars ¢y, ¢, ... ¢, the vector below
1, V2 n 1, C2 n

Y= vy + Uy + vy,
is called a linear combination of 77, 75, ... U, with weights ¢y, ¢,, ... ¢j,.
2. The set of all linear combinations of U7, V5, ... T, is called the Span of ¢y, ¢3, ... Cp.
Geometric Interpretation of Linear Combinations

- Ex.
Is y the span of vectors v; and v, ?

1 2 7
v = —2), v_2’=<5 , and y = 4).
-3 6 15



Solution:
y is in the span of vectors v; and V5 if there exists two constants ¢;, ¢, such that

= Clv_l) + sz_z)

y
{ C1+2C2: 7

—2c¢y + 5¢, 4
=3¢y + 6¢, = 15

*Make sure to write "Ry, Ry, R3" because the grader will know where you might have went wrong.

1 2| 7\|R;«<Ry+2R;| /1 2 7
-2 5| 4|~ 0 9 | 18 |Sincec=2forR;and c =3 for Rs, the system is inconsistent.
—3 6115/ |R;eR3+3R;| \O 121 36

. yis not in the span of vectors v; and v,
y & (i,vz)

The Span of two Vectors in R"
In general: Any two non-parallel vectors in R3 span a plane that passesthrough the origin. Any vector in that plane is also in the span of the
twovectors.

Vectors
¢ In general: Any two non-parallel vectors in R3 span a plane that passesthrough the origin. Any vector in that plane is also in the span of
the two vectors.



Lecture 4

Monday, August 30, 2021 4:25 PM

General Information:
e Quiz on Thursday (mainly on 1.1, 1.2, 1.3)
o 1lam - 7pm (15min)

Notes:
Section 1.4: The Matrix Equation

Notation

Symbol | Meaning

€ Belongs to

R” The set of vector with n real-valued elements

R™*" | The set of real-valued matricies with m rows and n columns

1
Ex.1 2|eRr3
3

b (131 By

Ex.3 R3>*1=p3

Linear Combinations
A is a mXxn matrix with columns d,, ... d,, and x € R", then the matrix vector product AX is a linear equation of the columbs of A.

e Note that AX is in the span of the columns of A.

| i,
- = = xZ — o d —
a ap - an] o | = X1a1 + Xza; + 0+ Xpap

o S| @s G 6D

Solution Sets
If Aisa mXxn, matrix with columns d,, ... d,, and x € R", then the solutions to
A¥=h
has the same set of solutions as the vector equation
X.@ + -+ xpan=b
which has the same set of solutions as the set of linear equations with the augmented matrix
@ @G @ b

Existence of Solutions

The equation AX = b has a solution if and only if b is a linear combination of the colums of A.
AJ-C) = Xla_l) + -+ xna_n)

Ex.
by
For what vectors b = | b, | does the equation have a solution?
bs
1 3 4 |b\ ReR—=2Ri|/1 3 4 |b RseRs—Ra| /1 3 4 by
2 8 4 |b ~ 0 2 —4 | by—2b 0 2 —4 b,_2by
0 -1 2 | b3 0 -1 2 b3 0 0 O bz — b, + 2b,
The system is consistent if and only if
or by =1/, — by
. by 1/,by — b3 1/, -1
The system is consistent iff b = | b, | = b, =b,| 1 |+bs3| O
bs by 0 1

The Raw Vector Rule for Computing AX

X1
1 0 2 01]x — L, =
[0 1 0 2] Ix; =[R1'x Rz'x]

=1 (g} 72 (% (= ()

(" w7 2
- x2 2x4

Summary
We now have four equivalent ways of expressing linear systems
1.1 A system of equations:



le + 3x2 =7

X1 — X = 5

1.2 An augmented matrix:
2 3|7
1 —-1(5

1.3 A vector equation:

a (2 (G (5)

1.4 As a matrix equation:
G @)

Each representation gives us a different way to think about linear systems



Studio 3

Tuesday, August 31, 2021 12:30 PM

General Information:
TA Office Hours: 4-5pm today
- Link on canvas

Definition:

- . . . .

U is a linear combination of
- > .

aq, ... Ay if

U=cng ++ cuvy,

For somecq, -, ¢, ER

Worksheet 1.3 and 1.4, Vector Equation and The Matrix Equation

1. Written Explanation Exercise
a. What does the span of a set of vectors represent?
i. Alllinear combinations of a set of vectors.
b. How do we determine whetehr a vector is in the span of a set of vectors?

i. Determine whether the augmented matrix of [171’ v, Vs | l_;] is consistent.

2. Indicate whether the statements are true or false.

a. If the equation AX = bis consistent, then b is not in the set spanned by the columns of A.
i. True

b. If the augmented matrix [4 p] has a pivot position in every row, then the equation AX = b must be consistent.
i. True
c. There are exactly three vectors in Span{a; a, a3}
i. False. There can only be 0 or oo vectors in a span.
3. Span{v; v,}is equal to which of the expressions below?

a.|Span{vy v; 3vi} |Equal
b. |Span{v; 3v;} |NotEqual
c. Span{vy v; 37+ 2v,}| Equal

4. For what values of h is b in the plane spanned by a; and a;?

1 -6 . 4
a.|a; =1 4 a, =|-17 b=1|2
-1 2 h
1 -6 |4\ R;«<R;—4R;|/1 -6 4
i 4 =17 | 2 ~ 0o 7 —-14
-1 2 h/ | Ry« Rs;+Ry 0 -4 1 h+4
ii. Now we know that x, = —2. Hence, h = 4
o (2 =1 3
5. Sketch the span of the columns of the matrix A = (4 _9 6)




Lecture 5

Wednesday, September 1, 2021 3:24 PM

General Information:
e Quiz on Thursday

Notes:
Section 1.5: Solution Sets of Linear Systems

Homogenous Systems
Linear systems of the form AX = 0 are homogeneous
Linear systems of the form Ax # 0Oare inhomogeneous

Because homogeneous systems always have the trivial solution, X = 6, the interesting question is whether they have non-trivial solutions.

Observation
A% = 0 has a nontrivial solution
& thereis a free variable
< A has a column with no pivot

Ex.
X1+3x2+X3=0
2X1—-X2—-5x3=0
X1—2x3=0
1 3 1 0\ Ree<R2-2R1| /1 3 1 0 1 3 1 0\ |Ri<Ri-3R: 1 3 1 0
2 -1 -5 0 ~ 2 =7 =7 0 ~ 2 =7 =7 0 ~ 2 =7 =7 0
1 0 =2 0 0 -3 -3 0 0 -3 -3 0 RREF — 0 -3 -3 0

Solution xs: free, x1 = 2X3, X2 = —X3
- . . . .
~ X is a solution if and only if:

x1 2x3 2
X = (xz) = (—x3) = (—1) > the solution set is a line
X3 X3 1

Parametric Forms, Homogeneous Case
In the example on the previous slide we expressed the solution to a system using a vector equation. This is a parametric form of the
solution.

In general, suppose the free variables for AX = 0 are xy, ... X,. Then all solutions to AX = 0 can be written as
X =X 0p + XpUker + 0+ X 0p
For some ¥y, ... T,,. This is a parametric form of the solution.

Ex.1X € RS
X1, X2: pivot variables
X3, X4, Xs: free variables

axz bx, cxs a b c

dx; ex, fxs d e f

=] x3 =x3| 1 |[+x,[0|+x5|0
X4 0 1 0

X5 0 0 1

Ex.2 (non-homogeneous system)
X1+3X2+X%x3=9
2X1— X2 — 5X3 =11

X1— 2X3 =6
1 3 1 5\ |Re<R:-2R1| /1 3 1 5 1 3 1 5 Ri<R1-3R; 1 0 -2 6
2 -1 -5 11 ~ 0o -7 -7 -7 ~ 0 1 1 1 ~ 01 1 1
1 0 =2 6/ |R3e<R3s-Ry [\0 -3 =3 -3 0 00 0 RREF — 0 0 0 0
Solutions:

xl 6 + ZX3 6 2
X3 X3 0 1

We found that:
X =X, +Xo » solution of AX = 0

Take % another solution A% = b
K- 5y A3 + A%,

-

-5-b
=5~ @“} a solution to AX = 0



Studio 4

Thursday, September 2, 2021 12:33 PM

General Information:
Def. The solution set of A% = b is the set of all X such that A% = b
If A is m X n, then solution set {55 € ]R"|A5(’ = I;}

Def. A homogeneous system is a system of equation of form AX = D

A=(p 2 “10)

What is the solution set of A% = 0?

<o 7 %)

X1+4X3=0
X2—5X3=0

X1 = —4'x3

Xy = 5x3
X3 = X3

(2)-=(z)

—4
= Solution set is {x3 ( 5 )

1

x3 ER

Worksheet 1.5, Solution Sets of Linear Systems
1. Written Explanation Exercise
a. When a homogeneous system has a nontrivial solution, what properties does that system have? List at least two.
i. Column with no pivots (at least 1 free variable)
ii. Includes the zero vector
2. Indicate whether the statements are true or false
a. Anon-trivial solution % to AX = 0 has all non-zero entries.
i. False
b. IfA%Z =band Ay = b, then A(-3) = 0
i. True
c. Any 3 X 2 matrix A with two pivotal positions has a non-trivial solution to AX = 0
i. False
3. Example Construction

1
a. Give an example of a non-zero 2 X 3 matrix 4 such that ¥ = (2) is a solution to A% = 0
1
.1 -1 1
- (2 -2 2)
B 2 5
b. Give an example of a non-trivial solution to AX = 0, whereA=(0 0
4 10

()

4, ExpressthesolutiontoAic’=Bintheparametricvectorform,whereA=((1) (5; 41} D
. (1 3 4 1| 0y|Ri«<R-4R,/(1 3 0 -3 ] 0
"A'(0011|0) (0011|0)
ii. X1+3x2-3x4=0
iii. X1=3X2+3X4
iv. X3+x4=0
V. X3-X4=0

—3x, + 3x4 -3 3

. = xZ = 1 = 0
VI. =2 X = —Xy4 —xZ 0 —x4 -1
X4 0 1



Lecture 6

Friday, September 3, 2021 4:59 PM

Notes:
Section 1.7: Linear Independence

Linear Independence

A set of vectors {vy, ..., v} in R™ are linearly independent if
K

Zcﬁ{ =7 + o+ oo =05 (7.7 | 0)
i=1
has only the trivial solution. It is heavily dependent otherwise.

In other words, {v7, ..., U} are linearly dependent if there are real numbers ¢, ¢, ..., ¢k not all zero so that
— —_— — =
1V + Uy + -+ v, =0

Consider the vectors vy, Uy, ..., Uy

To determine whether the vectors are linearly independent, we can se the linear combination the zero vector:

€1

— — —_— CZ -

Clv_l) + sz_2)+ s Ckv_k) = [Ul Uy o Vk] = VE =0
Ck

Linear independence: There is NO non-zero solution C.
Linear dependence: There is a hon-zero solution .

Ex.1
For what values of h are the vectors linearly independent?
[1 11 [h
i
Lh 1 1
1 1 h |0\ R<R-R /1 1 h 0\ |Rse<Rs+Ral /1 1 h 0
1 h 1 0]~ 0 h—1 1-h ol |~ 0 h—-1 1—-nh 0
h 1 1 | 0/ RseRs-hRiy|\0 1—-h 1-h% | O 0 0 2—-h-h%? |0

. . . h—1+#0 :h+1
The 3 vectors are linearly independent iff {hz Fh—2%0:h%1—2
Hence, the 3 vectors are linearly independent iff h = 1, —2

Check:
1 1 1 0
e 2(o)-()-()- ()
1 1 1 0
1 1 -2 0
(1) ()
-2 1 1 0
Suppose ¥ € R™. When is the set {v} linearly dependent for some c; # 0.

¢,V =0 = vmustbe 0

Suppose U7, U, € R™. When is the set {v7, 7, } linearly dependent? Provide a geometric interpretation.
Clv_l) + sz_z) = 6 with (Cl, Cz) * (0, O)

1) Ifc;=0o0rc;=0.Sayc;=0
¢, U5 = O with ¢ #0

v, =0
2) |fC1¢O,C2¢0
— 1 — — -
v, = —=v;: 7V, and v, are parallel.

C2

Two Theorems
Fact 1. Suppose 7y, ..., Uy, are vectors R™. If k > n then {v7, ..., Dy } is linearly dependent.

Ex. {((1)) (2) (43;)are linearlyly dependent.

(s 1)}

" ] 0|tnrows

k columns

Fact 2. If any one or more of 75, ..., U5 is 0, then {v7, ..., Uy} is linearly dependent.
0 1 2 0 1 2 0
0 1 1 . . 0 1 11_1(0

Ex. ol {1/ 3 are linearly dependent. Indeed: 58 0 +0 1 +0 3110

0 1 42 0 1 42 0

1.5 Parametric Vector form
X1 = pivot; xa, X3: free

X1 ax, bxs a b
f=<x2>=<x2 >=x2<1>+X3<0>
X3 X3 0 1




Studio 5

Tuesday, September 7, 2021 12:31 PM

Def. A set {vy, ..., U} is linearly independent if

(i.e. {vq, ..., v } indepdent if (v_{, e, Uk | 6()nly has trivial solution.)

Dependent Set:

i

2
= 2|1+ 12| =0
1 2

{0}

1 1 2
e Lo [
1 0 1
1 1 2
= — [0] -1 1
1
Independent Set:

(Lol
] [

Worksheet 1.7, Linear Independence
1. Written Explanation Exercise
a. How are span and linear dependence related to each other?
If v; € Span {v,, ..., v}, then {v5, ..., v} is dependent
b. Suppose T is a linear map
i. Ifvg,..., vy are dependent, why are T(vy), ..., T (vy) depdendent?
Exist cy, ..., ck such that
Gl + 4 Ur=0
Then 0 = ﬁo
=T(cy7 + -+ Cy)
=T + -+ cT@)
(Think of T(¥) as AX)

-

+|1|=0

0 1

ii. Ifvy,..., vy areindependent, need T(v,), ..., T(v;) be independent?

Take A = [g 8 , U= [3], v, = [(1)]
{Av{, Av,}dependent

2. Inthe problems below, V7, U, U5 are three linearly independent vectors in R3. Which of the collections of vectors below are linearly
independent?
a. %;,7,,0)
Dependent
b. (V1,01 + v3,77)
Dependent
c. (v,v1+ 73)
Independent
3. For what values of h are the colums of A linearly dependent?

[ 2

4

A=|-2 -6

| 4

7

-2
2
h

2
-2
4

4
-6
7

2 0
h 0

R1 — %Rl

~

R2<— Rz—Rl
R3<— R3—4R1
R3<— R3+R2

S O

SR, N

I
o 4

(e)

1
Rz — ERZ

Hence, h = 4.

4. A5x3matrixA=[a; @ az]hasallnon-zerocolumns, and @; = 5a; + 7a,. Identify a non-trivial solution to AX = 0.

A=la; a, a3]
a; = 5a; + 7a,
la7], [az], [as]
—5[a_1’]5— 7[az] + 1(5[a;] + 7[az])
X = —7]
1

5. Fill in the blanks.
a. The columns of a 7 X 3 matrix are linearly independent. How many pivots does the matrix have?
5 pivots
b. If the columns of a 3 X 7 matrix span R3, how many pivots does the matrix have?
3 pivots



Lecture 7

Wednesday, September 8, 2021 3:27 PM

Notes:
Section 1.8: Introduction to Linear Transformations

From Matrices to Functions
Let A be am X n matrix. We define a function
Ty R* - R™
T(W) = AV | A € R™*"
This is called a matrix transformation.
¢ The domain of T is R"™.
¢ The co-domain of T or target T is R™.
e The vector T(X) is the image X under T
e The set of all possible images T (X) is the range.

This gives us another interpretation of AX = b.
¢ Set of equations
e Augmented matrix
e Matrix equation
e Vector equation
e Linear transformation equation

Range
Ty

v

Domain: R™ Target: R™
Co-Domain

"Bad example"
F(x) = x2
Domain: R
Target: R

Range: [0, +0)

Functions from Calculus
Many of the functions we know have domain and codomain R. We can express the rule that defines the functions in this
way:

fi R->R f(x)=sin(x)

Domain: R
Co-domain: R
Range: [—1, 1]

In calculus we often think of a function in terms of its graph, whosehorizontal axis is the domain, and the vertical axis is
the codomain.

This is ok when the domain and codomain are R. It’s hard to do when the domain is R? and the codomain is R3. We
would need five dimensions to draw that graph.

: i], 27, E:F

11 7

1 1 3 7
Compute T(U) = Au = (0 1) (4% (5)

1 1/ \y
Calculate ¥ € R? so that T(¥) = b

v+ v, 7
v+ v, 7

By substitution: ¥ = (;)

Give a ¢ € R? so there is no ¢ with T(¥) = C.
or: Give a C that is not in the range of T.
or: Give a C that is not in the span of the columns of A.

4 5
¢ = (5), ¢ = <4>, or --- (any vector ¢ with ¢; # ¢3)

6 8
Range (a.k.a. span of columns): plane in R3 of equation X1 - X3 Or X = z Or X1 = X3

Ex.1

Domain: R?

Let A =
© Codomain: R3

Linear transformations
A function T: R™ - R™ is linear if
o TW+v)=T@)+TW) forallu, vin R"



o T(cv) =cTW)forallv € R™®and c in R.
So if T is linear then
T(c1vg + -+ cvg) = 1 T(0)) + -+ ¢, T (V)

This is called the principle of superposition. The idea is that if we know T (c;), ..., T(ci) then we know every T (v;)
Fact: Every matrix transformation Ty is linear

Fact: O T(0%) = 0T(#) =0

N[
a=(0] &=|o0
0 0

R =% (5) 5 )
(3= ()
~ar (7 ()

AU+ v) = Au+ Av

Indeed: 3 N
naee { A(cu) = cAu

Ex.2
Suppose T is the linear transformation T(X¥) = AX. Give a short geometric interpreation of what T (X) does to
vectors in R2.

wa=fp o 1@=( ()

X2
X AX

AX

X1
l, Reflected through the line x; = x»

4=y I 10-(3)

X2
X
X1

AX |, projected onto the y-axis.

_ 'k 0 SN\ X1 -
304 =g k] forallk e R T(X) =k (xz} ki
X2

kx
X
X1
l, scaling by k.
Ex. 3
What does T, do to the vector in R3?
[1 0 O X1
A=10 1 0 T(ic’)=<xz>
0 0 O 0
X
X4 I
xX)
X X3
l, projecting by the x; — x, plane.
1 0 O X1
A=|0 -1 0| TX) =[x
0 0 1 X3
X
X1
xX)
X2
l, projecting by the x; — x5 plane.
Ex.4

A linear transformation T: R? — R3 satisfies



P[] r@n[o

What is the matrix that represents T?

a1 Q12
A=|0az a3
asz; Qasz

P () -(7)

a0 (o) - ()

5 =3
=>A=<—7 8)
2 0
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Def. A function T: A — B is assignment rule that assings one value T(a) € B to each a € A.
A: Domain
B: Codomain

I’ This is one-to-one
Ex. f(x) =x2, f:[3, 71> R
l, Not onto because (e.g. -1) is not hit.

Def. A function T: A +— B is onto if for all b € B, there is some element of a € A such that T(a) = B.

Def. A function T: A — B is 1-1 if it passes the horizontal line test.
T(ay) =T(az) = a; = a,

Worksheet 1.8, An Introduction to Linear Transforms
1. Suppose T(x) = Ax for all x where A is a matrix amd T is onto.
a. What can we say about pivotal rows of A?
i. There is a pivot in every row
b. What can we say about the existence of solutions to Ax = b?
i. Ax = b is consistent

2. Let A be an 3 X 4 matrix. What must c and d be if we define the linear transformation T: R¢ +— R? by T(X) = AX?
c=4
d=3

3. Let T:R? +— R? be a linear transformation such that

T (b o 5]+ )

Construct a matrix 4 so that T(X¥) = AX for all vectors X.

X1
[_1 4 ] because [c; - Cnhl] ¢
3 -1 .

= T+
4. Let T:R* +— R3 be a linear transformation such that
4 0
of _ 0 =
T 1= T 1 0
0 4

Identify a non-trivial solution ¥ to TX = 0

4 0
0 0
1= (1) *2 (1
0 4

Know: Ax; = Ax,
Know: T(x) = Ax
So, Ax; — Ax, =0

4
SoT 8 —=0
—4

5. Let T4 be the lienar transformation with the matrix below. Match each choice of A on the left with the geometric description of the action
of T4 on the right.

.5 01 _ ., ..

0 .5] = dilation by 1/2

0 0] = projection onto y — axis
o 1l =P"Y y

[0 —17 _ . o

1 0 ] = rotation by 90

(1 a] _

o 1] = sheer
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General Information:
¢ Midterm 1: Kenaeda Building (8:00-8:50pm)
e MATLAB due tonight
o Professor is not an expert in MATLAB

Notes:
Section 1.9: Linear Transforms

Definition: The Standard Vectors
The standard vecotrs in R™ are the vectors ej, e5, ..., €, where:

1 2 0
e_1)= ? ) e_2)= Q ) a{: 6
0 0 1

For example in R3:

() =@ =0

T(X) = x,T(e7) + x,T(ez) + x3T(e3)

A Property of the Standard Vectors
Note: If A is a m X n matrix with columns vy, v5, ..., 7, then
Av; =v;,fori=12,..,n

So multiplying matrix by e; gives column i of A.

Ex.

1 2 3 1 2 3\ /0 2
(4 y 6)5»:(4 ; 6)(1)=(5)
7 8 9 7 8 9/\0 8

The Standard Matrix
Theorem:
Let T: R™ - R™ be a linear transformation. There there is a unique matrix A such that:
T(X) = AX, X €R™
In fact, A is am X n matrix, and its j* column is the vector @f)
A=[T() Tz - Tl

The matrix A is the standard matrix for a linear transformation.
Rotations

Ex.1 What is the linear transform T: R? — R? defined by
T(x) = x rotated counterclockwise by angle @?

e
1
sin(®)
T(e3)
T(e7)
4 A G cos(0)

- (29 - ()

cos(@) —sin(@)

Thus for A = (Sin((b) cos(®)

) T(%) = A%, Vi€ R?
Standard Matrices in R?
e There is a long list of geometric transformations ofR2in ourtextbook, as well as on the next few slides (reflections,

rotations, contractions and expansions, shears, projections, . . .)
e Please familiarize yourself with them: you are expected to memorize them (or be able to derive them)

Two Dimensional Examples: Reflections
Reflection through x; axis

€1 X1




c A

[

T

Standard Matrix: ((1) _01)

Reflection through x; axis

(4]
[

=
-

Standard Matrix: (_01 (1))

Two Dimensional Examples: Reflection
Reflection through x,-x1 axis

X2-X1
X2
€
e x
. (0 1
Standard Matrix: ( )
1 0
Reflection through x; - -xjaxis
X2
X2 - -X
€;
el xq

Standard Matrix: (_01 _01)

Two Dimensional Examples: Contractions and Expansions
Horizontal Contraction

X2
2
e X
(k0
Standard Matrix: (0 1)lkl <1
Horizontal Expansion
X2

Sl
!

(4]
[

=
-

Standard Matrix: (I(; (1))k >1

Two Dimensional Examples: Contractions and Expansions
Vertical Contraction

X2




€z

1 X1
Standard Matrix: ((1) 2)|k| <1
Vertical Expansion
X2
e;
el x
Standard Matrix: ((1) 2)k > 1

Two Dimensional Examples: Shears
Horizontal Shear(left)

X2

-5

(1 k
Standard Matrix: (0 1)k >0
Horizontal Shear(right)
X2

1

w‘
o
=

k

Standard Matrix: (é 1

)k<0

Two Dimensional Examples: Shears
Vertical Shear(down)

X2
24
1
Standard Matrix: (11( g)k >0
Vertical Shear(up)
X2
e
X1
Standard Matrix: (11( g)k <0

Two Dimensional Examples: Projections
Projection onto the x; axis

X2



e;
X1
. (1 0
Standard Matrix: ( )
0 0
Projection onto the x; axis
X2
e;
€1 X1

Standard Matrix: (8 (1))

Onto
Definition:

A linear transformation T: R™ — R™ is onto if for all b € R™ thereisa % € R" so that T(X) = b.

Onto is an existence property: for any be R™, AX = b has a solution.

Examples:
e Arotation on the plane is an onto linear transformation.
e A projection in the plane is not onto.

Useful Fact:
T is onto if and only if its standard matrix has a pivot in every row.
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Notes:

One-to-One

Definition:
A linear transformation T: R™ — R™ is one-to-one if for all b € R™ there is at most one (possibly no) ¥ € R™ so
that T(¥) = b

One-to-one is a uniqueness property, it does not assert existence for all b.

Ex.
e Arotation on the plane is a one-to-one linear transformation.
e A projection in the plane is not one-to-one.

Useful Facts

e T is one-to-one if and only if the only solution to T (X) = 0 is the zero vector, X = 0.
e T is one-to-one if and only if the standard matrix A of T has no free variables.

Ex.
Complete the matrices below by entering numbers into the missing entries so that the properties are satisfied. If it isn’t
possible to do so, state why.

a) Aisa 2 x 3 standard matrix for a one-to-one linear transform.

(/1 0 . .
A= (0 1) impossible: #col > # rows

b) B isa 3 x 2 standard matrix for an onto linear transform.

1
B = ( ) impossible: #rows > #cols

c) Cisa 3 x 3 standard matrix of a linear transform that is one-to-one and onto.

1 1 1 1 1 1
C= =0 1 =« if T: R™ - R", then "one-to-one" < "onto"
0 0 15

Theorem

For a linear transformation T: R™ — R™ with standard matrix A these are equivalent statements.
a) T isonto.
b) The matrix A has columns which span R™, n=m
c) The matrix A has m pivotal columns.

Theorem
For a linear transformation T: R™ — R™ with standard matrix A these are equivalent statements.
1. T is one-to-one.

2. The unique solutionto T(X) = 0 is the trivial one
3. The matrix A linearly independent columns. m=n
4. Each column of A is pivotal.

Additional Examples
1. Construct a matrix A € R?*?, such that T(¥) = AX, where T is a linear transformation that rotates vectors in R?

counterclockwise by g radians about the origin, then reflects them through the line x; = x,.

2. Define a linear transformation by T'(xy, x;) = (3xy + x5; 5x;3 + 7x3; x1 + 3x3)
Is T one-to-one? Is T onto?

Solution

1. Ref  Ref

e; > e, > e
R

A:((l) —01)

T(er) T(e)

2. T: R? > R3
L, Not onto because columns > rows

31 3 1
A= (5 7> T(e;) =T(, 0) = <5>, T(e;) =T(0, 1) = (7)

1 3 1 3
l, Two linearly independent columns: one-to-one.

Section 2.1: Matrix Operations

Definition: Zero and Identity Matrices
1. Azero matrix is any matrix whose every entry is zero.

Ozx3 = [8 8 8]: 02x1 = [8]

2. The n X n identity matrix has ones on the main diagonal, otherwise all zeros.

10 0
12=[(1) (1’, 13=[o 1 0]
00 1



Note: any matrix with dimensions n X n is square. Zero matrices need not be square, identity matrices must be square.

Sums and Scalar Multiples

Suppose A € R™*™, and a; ; is the element of A in row i and column j.
1. If Aand B are m X n matrices, then the elementsof A + Barea; ; + b; ;.
2. Ifc € R, then the elements of cA are ca; ;.

For example, if
I

What are the values of ¢ and k?
c=2;, k=5

Properties of Sums and Scalar Multiples
Scalar multiples and matrix addition have the expected properties. If r,s € R are scalars,and A, B, C arem X n
matrices, then
1. A+0pxn=A4
A+B)+C=A+(B+0)
r(A+B)=rA+71B
(r+s)A=rA+s4A
r(sA) = (rs)A

vk wn

Matrix Multiplication

Definition
Let A be a m X n matrix, and B be an X p matrix. The product is AB a m X p matrix, equal to
AB=A[B;, - By)=[Ab; - db,]

Note: the dimensions of A and B determine whether AB is defined, and what its dimensions will be.

A B
Ll L
mxn nxp

dimensions of product
X 2 .
AeR™" = ¥ e R"; b; € R"

Row Column Rule for Matrix Multiplication
The Row Column Rule is a convenient way to calculate the product AB that many students have encountered in pre-
requisite courses.

Row Column Method
If A € R™*™ has rows a;, and B € R™*P has columns E, each element of the product C = AB is ¢; j=a;.

—

bj
Ex.
Compute the following using the row-column method.

_ _(2 0 0 1
C_AB;(1 0—1% 5 6)
BA: not possible

AB # BA in general

Properties of Matrix Multiplication
Let A, B, C be matrices of the sizes needed for the matrix multiplication to be defined, and A is a m X n matrix.
1. (Associative) (AB)C = A(BC)
2. (Left Distributive) A(B + C) = AB + AC
3. (Right Distributive) (A + B)C = AC + BC
4. (ldentity for matrix multiplication) I,,A = Al,
Warnings:
1. (non-commutative) In general, AB # BA.
2. (non-cancellation) AB = AC does not mean B = C.
3. (Zero divisors) AB = 0 does not mean that either A = 0 or B = 0.

Ex.
4=(p o) =G 1 ¢=( 2

AB =0, AB = AC,
but:A#B, B#C, B#0

The Associative Property

The associative property is (AB)C = A(BC). If C = X, then
(AB)x = A(BX)
Schematically:

Multiply by AB
— [

Multiply by B

The matrix product ABX can be obtained by either: multiplying by matrix AB, or by multiplying by B then by A. This
means that matrix multiplication corresponds to composition of the linear transformations.

Multiply by A



| first:Bx
AB N
*| then: A(BX)
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Worksheet 1.9, Linear Transforms

1. Indicate whether the statements are true or false.
a. If Aisa3 X 2 matrix then the map x = Ax cannot be one-to-one.
i. False
b. If Aisa 2 X 3 matrix then the map x — Ax cannot be onto.
i. False
c. Ty;: R® - R™ is one-to-one if and only if AX = 0 only has the trivial solution.
i. True
2. Construct the standard matrix of the linear transformation T.

a. T: R? > R, where T ([ [} E‘ and 7 ([]} E‘

=R W
O RO

b. T isa vertical shear given by T'(e;) = 2e, and T (e;) = e; — 2e,
[e; —2e; 2e]
20
-2 2

c. Amatrix A € R?*2 such that T(¥) = AX. Tis a linear transformation that first reflects vectors across the line
X1 = Xz then rotates them counterclockwise by m radians about the origin, then reflects them across the line
X2 = 0.
X2
X1 = X2

i .

€1

[ ol=l Sl S o

X2=0 T X1 = X2

Notes:
T: R™ - R™, T(x) = Ax

The following are equivalent
e T is one-to-one.
e Ax = 0 has only the trivial solution
¢ No free variables in A
e Columns of A are independent.
e Tisonto
e Pivotin every row of A
e Ax = b consistent for every b € R™
e Ran(T) = R™
e IfTis 1-1 and onto, then m = nand RREF of 4 is .

Worksheet 2.1, Matrix Operations
1. Written Explanation Exercise
For square matrices 4, B, is it always true that (4 + B)? = A% + 2AB + B?? Explain why/why not.
a. No, because AB does not always equal BA
2. Consider:

(1 1N, (1 h
A= 8= 1)
For what values (if any) of k € Rand h € R:
a. Do matrices A and B commute?

False

b. Isthe product AB equal to I,?
True

c. Isthe product AB equal to the 2 X 2 zero matrix 05,7
True

3. Aisann X n matrix that has elements a; ; where
@ = {O, when i+ jis even
L 1,wheni+jis odd
For n = 2, how many pivot columns does A have?
2 pivots
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Notes:

Proof of the Associative Law

€1
LetAbemXxn,B = [1_9)1 Ep]anXpandC = [ : ]p X 1 matrix. Then,
c
p
BC: 0151+-'-+Cp5p
lin combin of cols of B
So,
A(BC) = &(by + -+ c,by)
= c1A131 + -+ Acpgp (multiply by A is linear)
€1
= [Al_;l Agp] 5 ] (lin combin of cols of AB)
c
p
= (AB)C
Ex.
11
4=y o
Give an example of a 2 X 2 matrix B that is non-commutative with A.
A= [1 1
0 0
_[7 7
e )4E=lo o
Try, B = [
6 1U|py_ [1 1]
6 6
1 o _mn 1.
A_[O o B_[O 0]. AB # BA
The Transpose of a Matrix
AT is the matrix whose columns are the rows of A.
Ex.
1 0
23 S]T _15 %
01 0 2 0 4 2
50
Properties of the Matrix Transpose
1. (AT =4
2. (A+B)T =AT +BT
3. rAT =rd")
4. (AB)T = BTAT
4 x B =48 = (48
mxn nxp mxp mxp
BTx 4 7= (4B)
pXxXn nxm pXxXm
AB:  (AB);; = Row(4,1).Col(B, )
(AB)¥ (AB);; = Row(4,)).Col(B, 1)
= Row (BT, ). Col(AT,))
Matrix Powers
x> =x-x
A= A - A = nmustbem (square matrix)

“ o
nxm nxm

For any n X n matrix and possible integer k, A¥ is the product of k copies of 4.
Ak =44..A

Ex. Compute C?

1 00
cC=10 2 0
0 0 2
1 0 O][1 0 O 1 00
c’=10 2 o|lo 2 o|l=|0o 4 o
0 0o 2llo o 2 0 0 4
1 0 0
LCc&lo 28 o0
0 0o 28
(11 s (2 2
A_(1 1%:‘4_(2 2)
\/§/_1 1 _\/§/

1, \/§/2 B \/§/2 1,



rot(™/e) rot("/3)

Ex.
Define:

A A R

Which of these operations are defined, and what are the dimensions of the result?
1. A+ 3C: Not Possible
2. A(AB)T: A e R?? (AB)T € R3*2: Not possible
3. A+ ABCBT: A+ ABCBT € R**?
4. (AB)?:NP
AB € R**3
(AB)? = ABAB
+ A’B?

Additional Examples
(a—b)(a+b) = a* — b?
(a +b)? = a? + 2ab + b?

True or False:
1. Foranyl,andanyA € R™™, (I, +A)(I,—A) =1, — A?
(I, + A)(I, — A) = L,* + Al, — I,A — A?
=1,% — A%: TRUE
2. ForanyAand Bin R™", (A+ B)? = A?> + 2AB + B?
(A+B)?=A+B)(A+B)

= A%>+ AB + BA + B?
# 2AB: FALSE

1 (0)

© 1
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Material Covered:
Chapter 2: Matrix Algebra

e Section 2.2 : Inverse of a Matrix

e Section 2.3 : Invertible Matrices

e Section 2.4 : Partitioned Matrices

e Section 2.5 : Matrix Factorizations

e Section 2.6 : The Leontif Input-Output Model

e Section 2.7 : Computer Graphics

e Section 2.8 : Subspaces of R"

e Section 2.9 : Dimension and Rank
Chapter 3: Determinants

e Section 3.1 : Introduction to Determinants

e Section 3.2 : Properties of the Determinant

e Section 3.3 : Volume, Linear Transformations
Chapter 4: Vector Spaces

e Section 4.9 : Applications to Markov Chains
Chapter 5: Eigenvalues and Eigenvectors

e Section 5.1 : Eigenvectors and Eigenvalues

e Section 5.2 : The Characteristic Equation
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Notes:
Section 2.2: Inverse of a Matrix

The Matrix Inverses
Definition:
A € R™" js invertible (or non-singular) if there is a C € R™ " so that
AC=CA=1,
If there is, we write C = A~
A-Al=A"1.4=1,

Uniqueness:

fAC=CA=1,
AndAD =DA =1,
CAD =CDA=C Jdxc

The inverse of a 2 X 2 Matrix
There's a formula for computing the inverse of a 2 X 2 matrix.
Theorem:

The 2 X 2 matrix [(cl b] is non-singular if and only if ad — bc # 0, and then

d
-1 1 _
[f:l Z] :ad—bc [—dc ab]
Ex.

State the inverse of the Matrix below

_[2 5
A= [—3 —7
2 X (=7) — (—=3) x5 # 0: Aisinvertible

_ 1 7 e\ o7
A1:2><(—7)—(—3)><5:(37 25%(37 25)

The Matrix Inverse
=1, A% =b = A"1A% = A"'b
Theorem:
A € R™™ has an inverse if and only if for all be R", AX = b hasa unique solution. And, in this case X = A~1p
Ex.
Solve the linear system
3x1+4x2=7
5x1+6x2=7

¢ o0 1
3 & 6 —4 6 —4\ (-3 2
(5 6) “(3Bx6)—(5x4) (—5 3 % _E(—s 3 % (2.5 —1.5)
S 17 -3 2 NN (—7
#X=ATh = (2.5 —1.507% ( 7 )
Properties of the Matrix Inverse
A and B are omvertob;e n X n matricies.
1. A Ht=4
2. (AB)™' = B714~1 (Non-commutative)

3. (AT)_l — (A—l)T
Ex.

True or False: (ABC)™! = C™'B71471 =True
(B~'A"Y)(AB) = B~Y(A"'A)B=B"'B =1,
(AB)(B™1A™) = A(BB ™A1 =447 = I,

3. AAT =474 =1,

(ADTAT = AT(A™ DT =1,

An Algorithm for Computing A~1
If A € R™™ and n > 2, how do we calculate A=1?
Here's an algorithm we can use:
1. Row reduce the augmented matrix (A|I,,)
2. If reduction has form (I,,|B) the A is invertible and B = A™!. Otherwise, 4 is not invertible.

Ex.
0 1 2
Compute the inverseof A=|1 0 3]
0 0 1
(AL 0 1 211 0 O
(1 0 3|10 1 0) {solve "AC = I,"" - "(A|I,)"}
0 0 110 0 1
Ri< R, 0 1 210 1 0O
~ (1 0 3|1 0 0)
0 0 110 0 1
Ri<Ri—3R; |/1 0 00 1 -3
~ (0 1 0{1 O —2)
Ry—~R,—2R; | N0 0 1I0 0 1
A= 0 1 -3
(1 0 —2)
0 0 1




Why Does This Work?
We can think of our algorithm as simulatenously solving n linear systems:

Ai=¢;
Ai =g
Ai =g

Each columnof A~tis A~'e; = %
Over the next few slides we explore another explanation for how ouralgorithm works. This other explanation uses elementary matrices.

Elementary Matrices
An elementary matrix, E, is one that differs bylnby one row operation. Recall our elementary row operations:
1. swaprows
2. multiply a row by a non-zero scalar
3. add a multiple of one row to anotherWe can represent each operation by a matrix multiplication with an elementary matrix.

Ex.

1 0 O
e Swap R R3:E=<O 1 )

0 0

1 0 0

e Ry— 1R, E=(0 1 0

0 0 1

0

0

1

1
E:R3«< R3+5R; E=<O
5

0
1
0
1 0 0 1 0
E=E<O 1 0>=<0 0>
0 0 1 5 1

Suppose
1 1 1 1 1 1
-2 1 0]=[0 3 2]
0 1

0 0 0 1

0
) 1
)0
1
0
Ex.

E

By inspection, what is E? How does it compare to I3?
E: Rz — Rz + 2R1

1 0 0
E=|2 1 0]
0 0 1
Theorem
Returning to understanding why our algorithm works, we apply a sequence of row operations to A to obtain I,;:
(Ex - E3 E; Ej) A=1,
Thus, Ex -+ E3 E, Ejistheinverse matrix we seek.

Our algorithm for calculating the inverse of a matrix is the result of the following theorem.

Theorem
Matrix A is invertible if and only if it is row equivalent to the identity. In this case, the any sequence of elementary row operations that
transforms A into I, applied I, generates A~ 1.

(Alln)

(E1A|Eq1 1)

(E2E,A|E2EqIy)

(Ey ... E;ELA|E) ... E,Eq L)

Using The Inverse to Solve a Linear System
e We could use A~ to solve a linear system
AZ=b
 We could calculate A=1 and then: ¥ = A~1b

e As our textbook points out, A~ is seldom used: computing it can take a very long time, and is prone to numerical error.
e So why did we learn how to compute A™1? Later on in this course,we use elementary matrices and properties of A~! to derive results.
e Arecurring theme of this course: just because we can do something a certain way, doesn’t that we should.
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Notes:
Section 2.3 Invertible Matrices

The Invertible Matrix Theorem
Theorem
Let A be an n X n matrix. These statements are all equivalent.
a) Aisinvertible.
b) Aisrow equivalentto [,.
c) A has n pivotal columns. (All columns are pivotal.)
d) A% = 0 has only the trivial solution.
e) The columns of A are linearly independent.
f) The linear transformation ¥ = AX is one-to-one.
g) The equation A% = ¥ has a solution for all b € R™.
h) The columns of A span R™.
i) The linear transformation X = AX is onto.
j) Thereisan X n matrix C so that CA = I,,. (A has a left inverse.)
k) Thereis an X n matrix D so tha AD = [,,. (A has a right inverse.)
) AT isinvertible.

Proofs:
IfCA =1,
If AX = Ay: cAX = cAy
Thus, ¥ = Ax is one-to-one
IfAD = I,

Take: b € R™: (AD)b = I,b

by b

Thus, X = Ax is onto
CA=1,=ATcT =1,

Invertibility and Composition
The diagram below gives us another perspective on the role of A™1.

E | Multiply by A
Multiply T

The matrix inverse A~1 transforms Ax back to X. This is because:
A71(AX) = (A71A)x =%

The Invertible Matrix Theorem: Final Notes
Items j and k of the invertible matrix theorem (IMT) lead us directly to the following theorem.

Theorem
If A and B are n X n matricies and AB = I,, then A and B are invertibleand B = A" and A = B!
e The IMT is a set of equivalent statements. They divide the set of all square matrices into two separate classes:
invertible, and non-invertible.
e As we progress through this course, we will be able to add additional equivalent statements to the IMT (that deal
with determinants, eigenvalues, etc).

IfAB =1,
By IMT: A is invertible

A"L(AB) = A7,

Ex.1
Is this matrix invertible?
1 0 2
A=|3 1 -2
-5 -1 9

~ ~

0 1 4

[1 0 2] R, < R, - 3R; [1 0 2] R; <R3+ R,y [1 0 2]
0 -1 -1

R3<— R3+R1

Ex. 2



Singular = not invertible

If possible, fill in the missing elements of the matrices below with numbers so that each of the matrices are singular. If it
is not possible to do so, state why.

1 0 1 1 1 100
(1 0 1) (0 1 1) 0 1 1
00 1 00 1 0 1
Not possible Not possible Possible
2 pivot columns pivot in all columns 2 pivot columns

Matrix Completion Problems
¢ The previous example is an example of a matrix completion problem (MCP).
e MCPs are great questions for recitations, midterms, exams.
¢ The Netflix Problem is another example of an MCP.

Given a ratings matrix in which each entry (i, j) represents the rating of movie j by customer i if customer i has watched
movie j, and is otherwise missing, predict the remaining matrix entries in order to make recommendations to customers
on what to watch next.

Section 2.4: Partitioned Matricies

What is a partitioned matrix?

Ex.

This matrix:
31 4 1 0
1 6 1 0 1
0O 0 0 4 2

We partitioned our matrix into four blocks, each of which has different dimensions.

Another Example of a Partitioned Matrix
Example: The reduced echelon form of a matrix. We can use a partitioned matrix to

SO OO O
(=N el el )
O OOk OO
SO rO OO
O O % ¥ * %
O O OO OO

This is useful when studying the null space of A, as we will see later in this course.

Row Column Method
Recall that a row vector times a column vector (of the right dimensions) is a scalar. For example,

1
[1 1 1][0]=3
2

This is the row column matrix multiplication method from Section 2.1.

Theorem
Let A be m X n and B be n X p matrix. Then, the (i, j) entry of AB is
row;A = col;B
This is the Row Column Method for matrix multiplication.

Partitioned matrices can be multiplied using this method, as if each block were a scalar (provided each block has
appropriate dimensions).

(4 B Fy(AEFEC

Example of Row Column Method
-1

. . [a bl " _[d -b
Recall, using our formula for a 2 X 2 matrix, [c d] = [—c 4 ]

Ex.

Suppose A € R™" IV € R™™, and C € R™" are invertible matrices. Construct the inverse of [‘g B].

(A BW X (AW+BY AX + BC (In 0)
0 Y Z cY cZ 0 I,

W, X, Y, Z € R
CY=0: C lcy =c"10

CZ=1, Z=C"1
AW +BY =1, W=A4"1



AX+BZ=0: AX=—-BC™!

(A H)l _ (A—l _A—lBC—1>
0 C 0 c1
2 X 2 matrix:

-1 1 _
@ o ==l
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Worksheet 2.2 and 2.3, Invertible Matricies
1. Consider the sequence of row operations that reduce matrix A to the identity.

0 4 0 1 0 0 1 0 0 1 0 0
A=11 0 0)]~({0 4 0|~|0 4 0])~|0 1 0)=1I,
0 8 1 0 8 1 0 0 1 0 0 1

Construct the elementary matrices E;, E5, E3.

01 0
E,=[1 0 0
00 1

1 0 0
E,=|0 1 0
0 -2 1

1 0 O

1
E3= 0 Z 0
0 0 1

2. Indicate whether the statements are true or false. 4 is an n X n matrix.
a. If AX = Ay for some X # y, then A cannot be intertible.

i. True

b. If for some b € R", AX = b has more than one solution then 4 is invertible.
i. False

c. Every elementary matrix is invertible.
i. True

3. Compute the inverse of the matrix, where ¢ € R. For what values of ¢ does the matrix have an inverse?
0 1 1]
A=12 0 4

0 -1 cl

[0 1 1] R, <> Ry [2 0 4] Rs < Rs + R, [1 0 c+3

R3(—LR3 1 0 c+3
2 0 4 ~ o 1 1 R1<—1R1 0 1 1 f+1 0 1 1
0 -1 ¢ 0 -1 ¢ 2 0 0 c+1 0 o0 1
R3(_>R2 R1<—R1+R3
c+—1
2 1 2
c+1 2 c+1
“ATl'=EE,ElA=| 1 ! 0 !
3m2m c+1 c+1
1 1

c+1 0 c+1

4. Let A be ann X n matrix. Which statements guarantee that A is invertible?
a. Every vector in R™ is in the span of the columns of A.
i. True
b. A% = b has a solution for everyB € R™.
i. True
c. Matrix A can be row reduced to the identitity matrix.
i. True
d. The range of the linear transform ¥ — AX is R™.
i. True

5. Two reasons that a matrix is not invertible are:
a. One column is a multiple of another column.
b. One column is the sum of other columns.
By inspection, identify which of the reasons above apply to these matrices.
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Section 2.5: Matrix Factorization

Motivation
« Recall that we could solve A% = b by using
= A"
¢ This requires computation of the inverse of an n X n matrix, which is especially difficult for large n.

« Instead we could solve A% = b with Gaussian Elimination, but this is not efficient for large n.
e There are more efficient and accurate methods for solving linear systems that rely on matrix factorizations.

Matrix Factorizations
¢ A matrix factorization, or matrix decomposition is a factorization of a matrix into a product of matrices.
e Factorizations can be useful for solving AX = E, or understanding the properties of a matrix.
e We explore a few matrix factorizations throughout this course.
¢ In this section, we factor a matrix into lower and into upper triangular matrices.

Triangular Matrices
¢ Arectangular matrix A is upper triangular ifa;,j=0fori>j

1 0 0 1
(1 5 0) 0 2 1 >
0 2 4 0 0 1
0 0
e Arectangular matr|xA is lower rlangular ifa;,j=0fori<j

0
0
1
t
0 0 O
(100) 100>
3200010
2 0 1
is both

Ask: Can you name a matrlx that is bot upper and lower triangular?
1 0 0 O

0 0 0

L={2 L9 %) o, =(o 0 o

*=loo 1 of BT 00
000 1

300
Diagonal matrix:D ={0 5 0

The LU Factorization

Theorem
If A is an m X n matrix that can be row reduced to echelon form without row exchanges, then A = LU. L is a lower triangle m X n matrix
with 1's on the diagonal, U is an echelon form of A.

Ex.

If A € R3%2, the LU factorization has the form:

1 0 0\ /* =
A=LU=|* 1 0 <0 *>
* o+ 1 0 O
ct: the LU factorization is unique

|fA = LlUl = L2U2
Then Ll = LZ and Ul = UZ

o
o
N

Why We Can Compute the LU Factorization
Suppose A can be row reduced to echelon form U without interchanging rows. Then,
E,E =U
where the E; are matricies that perform elementary row operations. They happen to be lower triangular and invertible, e.g.
100" 11 00
0 1 0] = [ 0 1 0]
2 01 -2 0 1
Therefore,

A=E ' E'U=LU

1 0 O
R3<—R3—2R22 E={0 1 0
1

1 * x\ /1 * 1 = =
<O 1 *) (0 1 *) = (0 1 *>
0 0 1/\0 0 1 0 0 1

What about swap?

*

0 0 1
Ri <> Rs: E=[0 1 0] Notlower Triangular
1 0 0

Using the LU Decomposition
Goal: given A and b, solve A% = b for X.

Algorithm: construct A = LU, solve A% = LUX = b by:

1. Forward solve for j in Ly = b.
2. Backwards solve for X in UX = y.

Ex.



Solve the linear system whose LU decomposition is given.

1 0 0 O /1 O O 2
— _(1 1 0 0}[f0 2 1 7_ (3
A=1LU= 0 2 1 0J\0 0 2/ b= 2
0 01 17N 0 O 0
1. Forward:Ly=b  (§ = UR)

1 0 0 0\ /N 2

1 1 0 0})(Y2)_{(3

0 2 1 0)J\Ys) \2

0 0 1 1/ \)a 0

First row:y1 =12
Secondrow:y;1+y,=3 — y,=1
Third row: 2y, +y3=2 — y;4=0
Lastrow:y3+ys=0 — y,=0
2
Ly={g) L¥=b
0 -
But we want AX = L(UX) = b

1. Backward: UX =y

/
AT~
w N -
N—————
Il
OO IN

1
0
0
0
Lastrow:0=0

Third row: 2x3=60 — x3=0

Second row: 2x; +x3=1 = x;=1/,
First row: x; = 2

2

Thus: X = (1/2>: solution of AX = b
0

Indeed: AX = LUX =Ly =b

An Algorithm for Computing LU
To compute the LU decomposition:
1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
1. Place entries in L such that the same sequence of row operations reduces L to I.
Note that

e |In MATH 1554, the only row replacement operation we can use is to replace a row with a multiple of a row above it.
e More advanced linear algebra courses address this limitation.
Ex.

Compute the LU factorization of A.

4 -3 -1 5
A=|-16 12 2 =17

8 -6 -—-12 22

E1: Ry Ry + 4Ry 4 -3 -1 5 ~ 4 -3 -1 5
A ~ —-16 12 2 =17 | | Es;:R3«<R3-5R, (|0 0 -2 3 |=U

E>: Rz« R3-2R; 8 -6 -12 22 0 0 0 -3

1 0 0\/1 0 0\/1 0 0
L=E'E,7'E;7'=|-4 1 o|lo 1 o]{o 1 0
0 0 1/\2 0 1/\0 5 1

Summary
e Tosolve A = LUZ =h
1. Forward solve for j in Ly = b.
2. Backwards solve for X in UX = y.
e To compute the LU decomposition:
1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
2. Place entries in L such that the same sequence of row operations reduces L to I.
The textbook offers a different explanation of how to construct the LU decomposition that students may find helpful.

Another explanation on how to calculate the LU decomposition that students may find helpful is available from MIT Open Course Ware:
www.youtube.com/watch?v=rhNKncraJMk
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Worksheet 2.4 and 2.5, Partitioned Matrices and Matrix Factorizations

Worksheet Exercises
1. Aand B are n X ninvertible matricies, I,, is the n X n identity matrix, and 0 is the n X n matrix. Construct an expression for X in terms of

AandB.
o x B\*
(A B)(A 5 Oéln>:Bz+BAX
BA
o x B(X X
(4 B)(A 5 oln |=WUB AX+B*> AB)| I, | = (BAX +I,(AB + B?) + A*B?)
BA BA

~ (BAX + I,(AX + B?) + A2B?) = B2 + BAX = I,,(AX + B?) + A%2B? = B2 = AX + B? + A2B? = B2
“AX+A?B2=0= X+ AB? =0 = X = —AB?

2. Compute the LU factorization for

-1 5 3 1
A=11 -10 -3 1

0 -5 0 2

E1:R2(—R2+R1 -1 5 3 1 ~ -1 5 3 1
A ~ 0 =5 0 2||E;:R3«R3-R/|0 =5 0 2|=U
E;: R3«<—R3-R» 0 -5 0 2 0 0 0 0
1 0 O0\/1 0 0\/1 0 0
L=E'E, 'E;7'=(-1 1 of{o 1 o]{o 1 o
0 0o 1/\0 0 1/\0 1 1
1 0 0
L= 1 0
[0] 1

3. Compute the LU factorization of A and use it to solve for AX = b.

[ 2 -1 0 % 0 01** . 0
A=|-1 2 —a|=|""72 1 Oflo 1 «|, B=|a
_2/31

0 -1 2 0 00 1 —4
1 0 0][2 -1 o0 0
a=|"Y2 1t offo 3, -1 B=[4]
0 -2/3 1[0 0 %/ —4
L U

Solve:Ly =b  (§ = UR)

1 0 0 4 0
_1
[ 1 0 [yz :[4]
0 _2/3 1|3 —4
Firstrow:y1 =0

Second row: —1/,y1+y,=4 > y,=4
Third row: —2/3y, +y3=-4 — y3="%/;

-

0 -
L7 = 4]; Ly =b

_4/3

Solve: Ux =y
2 -1

0 X1 0
0 3/2 -1 [le = [ 4 ]
0 0 4|l -3

Third row: 4/3x3=—%/3 - x3=-1
Second row: 3/5% = x3=4 - x3=2
Firstrow: 2x; = x;=0 — x1=1

1
Thus: ¥ = [ 2 ]: solution of A% = b
-1

4. Written Explanation Exercise: What is the LU decompostiion good for? Your reasoning should involve computational efficiency.

LU decomposition is generally used for computational efficiency since the amount of steps it takes to find the inverse of A such that A =
LU is significantly less when compared to standard and more roundabout way of computing the inverse.
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Notes:
Section 2.6: The Leontif Input-Output Model

Example: An Economy with Two Sectors

External Demands

This economy contains two sectors.
1. electricity (E)
2. water (W)
The “external demands” is another part of the economy, which does notproduce E and W.

How might we represent this economy with a set of linear equations?

The Leontif Model: Internal Consumption
Suppose economy has N sectors, with outputs measured by ¥ € RV.
X = output vector x; = element i of vector
X = number of units produced by sector i
The consumption matrix, C, describes how units are consumed by sectors to produce output. Two equivalent ways of
defining C:
* Sector j requires a proportion of the units created by sector i. Call that ¢; jx;
* Sector i sends a proportion of its units to sector j. Call that ¢; jx;
Elements of C are ¢; j, with ¢; ; € [0,1] and
CX = units consumed
X — CX = units left after internal consumption

j
C= H—> i: ¢;j = pattern of sector i needed to produce 1 unit of ;.

Ex.
An economy contains three sectors, E, W, M. For every 100 units of output,
e E requires 20 units from E, 10 units from W, and 10 units from M
e W requires 0 units from E, 20 units from W, and 10 units from M
* M requires 0 units from E, 0 units from W, and 20 units from M
Construct the consumption matrix for this economy.

10%

E W M

02 0 0\ E
C=<01 0.2 O>W

01 01 02/ M

0.2xE 0 0
Cx = (0.1xE 0.2xE 0
0.1xE 0.1xE 0.2xE

Solution: Creating C
Our consumption matrix is

1(200)
c==—(1 2 o0
\1 1 2

Note:
¢ total output for each sector is the sum along the outgoing edges for each sector, which generates rows of C
¢ elements of C represent percentages with no units, they have values between 0 and 1
e our output vector has units



The Leontif Model: Demand
There is also an external demand given by d € RN, We ask if there is an ¥ such that

i-Ci=d
Solving for X yields
2=(1-0C)d

This is the Leontief Input-Output Model.

UI-0x=d
If (I — C) is invertible
Then% = (I — €)~'d

Ex. 1 Revisited
Now suppose there is an external demand: what production level is required to satisfy a final demand of 80 units of E, 70
units of W, and 160 unites of M?

20%

20%
. 80
d=1| 70
160
1/ 8 0 O
(I—C)=E -1 8 0
-1 -1 8
Solve (I —C)¥ =d
Solution:
The production level would be found by solving:
i-Cx¥=d
x=U-0C)d

1(8 0 0) (80)
—|-1 8 o)z=(70
01 -1 8 160

8x1 =800 = x; =100
X1+ 8x2=700= x, =100
X1 X2+ 8x3=1600= x, =225

The output that balances demand with internal consumption is
100
X = (100)
225

The Importance of (I — €)1
For the example above

125 0 0
(1—6)-1z<0.15 125 0 )

0.18 0.17 1.25

The entries of (I — €)™ = B have this meaning: if the final demand vector d increases by one unit in the j* place, the
column vector b; is the additional output required from other sectors.

So to meet an increase in demand for M by one unit, requires 1.25 of one additional units from M to meet internal
consumption.

First/Odd demand: d_o)
Xo=0U-0)"1d,
New demand: dy = d, + K&
==y =(U=-0Tldy+ KI-O" e

X0 columniof (I-C)~1
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Section 2.7: Computer Graphics
Homogeneous Coordinates
Translations of points in Rn does not correspond directly to a linear transform. Homogeneous coordinates are used

model translations using matrix multiplication.

Homogeneous Coordinates in R™
Each point (x, y) in R? can be identified with the point (x,y, H), H # 0, on the plane in R3 that lies H units above the
xy-plane.

Note: we often we set H = 1.

Example: A translation of the form (x,y) = (x + h,y + k) can be represented as a matrix multiplication with
homogeneous coordinates:

1 0 h\ /X x+h
(0 1 k>(Y>=<y+k>
0 0 1/ 1
/.(x’y’H) /::H
/‘(X,y) /

Homogeneous matrix of a 2D linear transform
| O

A | 0

— [ + —_
| 1

, Where A is a linear matrix in 2D

0 0

A Composite Transform with Homogeneous Coordinates
Triangle S is determined by three data points, (1,1), (2,4), (3,1). Transform T rotates points by g radians

counterclockwise about the point (0,1).
a) Represent the data with a matrix, D. Use homogeneous coordinates.
b) Use matrix multiplication to determine the image of S under T.
c) Sketch S and its image under T.

1 2 3
A. D= <1 4 1)
1 1 1
0 1 0 O
B. First: translation of i = ( ) A= (0 1 —1)

0 -1 0
Second: rotation:R=(1 0 0

]
=]
—_

1 0 O
Third: translation of ¥ = () B = <0 1 1)
0

0 -1 1
LT=BRA=(1 0 1

0 0 1
0 -1 1\/1 2 3\/0 =3 0
Imageof SunderTisTD=|1 0 1)1 4 1]){2 3 4
0 0 1/\1 1 1/\1 1 1

3D Homogenous Coordinates
Homogeneous coordinates in 3D are analogous to our 2D coordinates.

Homogeneous Coordinates in R3.

,Y,Z,H) are homogeneous coordinates for (x,y,z) in R*>, H # 0, an
(X,Y,Z,H) h di for (x,y,z)inR3, H # 0, and

Y _Z
] y—H; Z_H

X =

| X<

3D Transformation Matrices
Construct matrices for the following transformations.
a) A rotation in R3 about the y-axis by 1 radians.

-2
b) A translation specified by the vector p = ( 3 >
4

z
1 0 0
R,(8) ={0 cos(8) -—sin()
0 sin(8) cos(6)

cos(8) 0 sin(0)

e—v R@= 0 1 0
—sin(@) 0 cos(0)

cos(8) —sin(8) 0
X R,(0) = (sin(@) cos(6) 0)
0 0 1
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Worksheet 2.6, 2.7, 2.8: The Leontif Input-Output Model, Computer Graphics, Subspaces of R™
Worksheet Exercises

1. Aneconomy contains three sectors: X, Y, Z. For each unit of output,
a. X requires .2 units from X, .1 units from Y, and .1 units from Z.
b. Y requires 0 units from X, .2 units from Y, and .1 units from Z.
c. Z requires 0 units from X, 0 units from Y, and .2 units from Z.

Construct the consumption matrix for this economy. What production level is required to satisfy a final demand of 80 units of
X, 60 units of Y, and 160 units of Z?

2 0 0
c=11 2 0
a1 1 2

X=U-C)"1d=

100
175
/2

3575/16

2. Rectangle S is determined by the data points, (1,1), (3,1), (3,2), (1,2). Transform T reflects points through the liney = 2 — x
a. Represent the data with a matrix, D. Use homogeneous coordinates.

1 1 1
31 1
b= 3 2 1
1 2 1
b. Use matrix multiplication to determine the image of S under T.
T =ToR;T, ™"
1 0 O0]Jf0 -1 o0Jf1 0 O
~T=(0 1 0”—1 0 0”0 1 0]
0 -2 1iLo 0 1110 2 1
0 -1 0
=[-1 0 0
2 0 0
1 1 1
. _13 -1 1
~SunderT = 3 -1 1
1 -1 1
c. Sketch S and its image under T.
y

3. Transform T, = AX rotatoes points in R? about the point (1,2). Construct a standard matrix for the transform using
homogeneous coordinates. Leave your answer as a product of three matricies.
1 0 O0][cos(@) sin(8) 0][1 0 O
T, = ! 0 1 O] [—sin(@) cos(6) 0] [O 1 0]
-1 -2 1 0 0 it 2 1
4. Construct the matrix for the transformation that performs a rotation in R3 about the x-axis by 7 radians.

-1 0 O
A=10 -1 0
0 0 1

5. A has the reduced echelon form below. Construct a basis for ColA and for NullA
1 4 0 10 0 13
0

A=[a1 a; dz a4 Gas a6]~ 0 0 0 0 1 4
0O 0 O 0 0 O
1| [o] [O
. 10| 111 |0
Basis for Col4 = ol'lol 11
0] L0] O
—4 —10 —13
1 0 0
. 10 3 5
Basis for Null4 = L 1| 0
0 0 —4
0 0 1
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Section 2.8: Subspaces of R"

Subsets of R™
Definition
A subset of R™ is any collection of vectors that are in R™.

V3
2. )0y /2
oo (G2
unit circle {¥ € R?|x; + x, = 1}

In R3: unit sphere {X € R3|x; + x, + x5 = 1}

Subspaces in R™
Definition
A subset H of R" is a subspace if it is close under scalar multiplies and vector addition. That is: for any ¢ € R and for
u,vEH.
1. ci €H
2. U+vVEH

Note that condition 1 implies that the zero vector must be in H.
Ex.1: Which of the following subsets could be a subspace of R?

A) The unit square B) a line passing through C) a line that doesn't

NO the origin pass through the origin
(/2 )€ YES NO
Unit Square 0¢R"

UCPRAIX

Unit Square

Remark: {6} is the only bounded subspace of R"

The Column Space and the Null Space of a Matrix
Recall: for vy, ... v, € R", that Span{v_l), v_p’} is:

The set of all combinations of vy, ... v,

This is a subspace, spanned by V7, ... 7,
Definition
Givenanm X nmatrix A = [a; - a,]
1. The column space of 4, Col 4, is the subspace of R™ spaned by aj, ... a,,.

2. The null space of 4, Null 4, is the subspace of R™ spanned by the set of all vectors X that solve AX = 0.
U,V ENuUlAceR
A(ct) = cAd = 0:ci € Null A
AU+ V) =Au+Av: U+ vV ENullA

= Null 4 is a subspace.

Ex.
_ 1
A—(l Q)Col(A)—Span(O)
~\0 0 _ 0
Null(A) = Span (1)
Ex.
Is b in the column space of A?
1 -3 -4 [1 -3 —4] . 3
A=|-4 6 -2(~|0 -6 -—-18], b=<3
-3 7 6 0 0 0 | —4
. 1 -3 —4 3\|Ry<Ry+4R, | /1 -3 —4 3 R3<—R3—1R1 1 -3 —4 3
Ab¥|-4 6 -2 | 3|~ 0 6 -—18 [ 15])|_ 3°/{o 6 —-18 | 15
-3 7 6 —4/ |R3<R3+3R; | \O 2 6 5 0 0 0 0

A% = b is consistent: b € Col A



Remark: The third column of A is actually not needed here

Ex.2
Using the matrix on the previous slide: is ¥ in the null space of A?

—51
c=|-=-31]1, 1ER

A
1 -3 —4\/-52 —-54+9-—-4 .
A17=<—4 6 —2)(—3%):1( 18 — 18 )=0
-3 7 6 A 0
l, ¥ € Null(4)
Remark:
1 -3 —4 —51 —-5+9-4 .
E1‘7’=<0 6 —18)(—3/1>=A( 18 — 18 >=0
0 O 0 A 0
l, ¥ € Null(E)

Why%(]@(]ﬁ))

— A% = 0 and EX = 0 have the same solution set

Basis
Definition
A basis for a subspace H is a set of linearly independent vectors in H that span H.

Ex.

Theset H = | 3 € R*|x; + 2x, + x5 + 5x, = 0

a) Hisanull space for what matrix 1?
b) Construct a basis for H.

a) x;+2x;, +x3+5x,=0

X1
X | _
1 215 X3 =0
A
X4

H = Null(4)
l, This is a subspace of A
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What is a subspace?
1. Asubset S such that
a. 0€S
b. Ifd,b €S, thend+b€S
c. fdeS, thencdeSforallceS
2. The span of some non-empty set of vectors
3. The column space of any matrix

Def: The dimension of a subspace S is the smallest # of vectors that span S.

C01<[u_£ u_n’]ﬁSpan(u_{,.--u_n’)
A

Col(A) = {Ax: x € R"}
Null(A) = {x: Ax = 0}

Worksheet 2.8, 2.9, Dimension and Rank

Worksheet Exercises
1
1. Construct a 3 X 3 matrix A with two pivotal columns, so that <1> is the null space of A.

1 1 -2 1 0 -1
0 1 -1f, 0 1 -1

0 0 O 0 0 O
a. All 2 X 4 matricies have a non-trivial null space.
True
b. A4 X 2 matrix with two pivot columns can have a non-trivial null space.
False
c. If the columns of a 6 X 6 matrix 4 are a basis ffor R®, the null space of 4 is the zero vector.
True

2. Alisan X nmatrix that has elements a; ; where
@ = {0,wheni+jisodd
L7 |1, when i+ j is even
Suppose n = 2.
a. Whatis the rank of A?
2
b. Give a basis for the column space of A.

I

3. Which of the following, if any, are subspaces of R3? For those that are subspaces, what is the dimension of the subspace?

X1
X3

0
i. Not a subspace because [0] is not in the set
0

x1+x2:4}

X1
b. <x2>ER3x1+x2+x3:0, x1+2x2=0}
X3
i. 2

X1
c. <Xz) € R3|x; < xp < x3
X3
0

i. Not a subspace because [0] is not in the set
0

1 0
d. The null space of A = (2 0)

30
i 1
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Notes:
X1 —2x, —x3 —5x4 -2 -1 -5
s = X2 _ X _ 1 0 0
O =5 | = x3 =2| o [TH| 1 )T o
X4 X4 0 0 1
vy vz Vs

= {v;, V,, V3}asa basisof H.

Ex.
Construct a basis for Null A and a basis for Col 4
-3 6 -1 0 1 -2 0 0
A=|11 -2 2 0|~|]0 0 1 O
2 -4 5 0 0O 0 0 O
-3 -1
1), 2 is a basis for Col A
2 5
X € Null (4) if
X1 2x, 2 0
> X X 1 0
=3 )=\ 0 |=%|0)tx|o
X4 X4 0 1
2 0
(1) , 8 is a basis for Null A
0 1

Additional Example
etV = {(,4 R?|ab = 0}

1. Give an example of a vectorinV. ((1))

2. Give an example of a vector thatis notin V. ((1))

3. Isthe zerovectorinV? YES

4. IsV asubspace? ((1)} ((1)%: (1)~No

Section 2.9: Dimension and Rank
Choice of Basis

Key idea:
There are many possible choices of basis for a subspace. Our choice can give us dramatically different properties.

Example: sketch b_{ + b_z) for the two different coordinate systems below.

b, b, o
b, + b,

b—Z) —

b,

Coordinates
Let B = {bl, . bp} be a basis for a subspace H. If X is in H, then the coordinates of X relative B are the weights (scalars)
€1, -+, Cp SO that

J_C) = Clb—1)+ et Cpb—p)

And
€1
[55]3 = [ S
Cp
Is the coordinate vector of X relative to B, or the B-coordinate vector of X
Ex.1
1 1 5
Letv; = |0|, v, =|[1]|, % =|3]. Verify that X isin the span of B = {v], v}, and
1 1 5

calculate [X]p.

¥ isin the span of {v;, .} if there exists ¢y, ¢, such that ¢, V7 + ¢, v, = X

1 115 1 115
0 1 3)~<0 1] 3
1 115 0 01O




Thus, ¥ = 2v; + 3V,

- ()

Dimension

Definition

The dimension (or cardinality) of a non-zero subspace H, dim H, is the number of vectors in a basis of H. We define
dim{0} =0

Theorem
Any two choices of basis By and B, of a non-zero subspace H have the same dimension.

Examples:
1. dmR*=n
2. H={(xyq,....,xp): x1 + -+ x,, = 0} has dimensionn — 1
3. dim(Null A) is the number of free variables
4. dim(Col A) is the number of pivot variables

—xz _x3 cee _xn
X1 X2
(1...1)<f)=0, X = X3
xn
xTL
Proof: Assume #B; > #x,
Wi, eovy) (W, en,vy) tn>m

17—1) = allv—l) + -+ Am1Vm

E{ = allv_l) + -+ amnﬁ

aj;; o Qi
AQm1  ° Amn
l l

il  [Vals,

Columns are linearly dependent
- {v4, ..., 7, } are linearly dependent
— Not a basis

Rank
Definition
The rank of matrix A4 is the dimension of its column space.

Ex.2 Compute rank(4) and dim\(ul(A))

2 5 -3 -4 8 2 5 -3 —4 8

4 7 -4 -3 9|_.._|0 =3 2 5 =7

6 9 -5 2 4 0 0 0 4 —6

0 -9 6 5 -6 0 0 O 0 0
3 pivot columns

Rank(4) = 3
dirNull (A)3F 2

Rank, Basis, and Invertibility Theorems
Theorem (Rank Theorem)
If a matrix A has n columns, then Rank A + dim(Nul A) =n

Theorem (Basis Theorem)
Any two basis for a subspace have the same dimension

Theorem (Invertibility Theorem)
Let A be a n X n matrix. These conditions are equivalent
1. Aisinvertible.
2. The columns of A are a basis for R™.
3. ColA =dim(Col A) = n.
4. NullA={0}.

Examples
If possible give an example of a 2 X 3 matrix A, that is in RREF and has the given properties.
a) Rank(4) =3
Not possible
b) Rank(4) =2
(1 0 = (0 1 00 0 1
A‘(o 1 *ér(o 0 1r(0 0 0)

c) dinNull(A)F 2



1=( o &G o #G o o

d) Null 4 = {0}

Not possible
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Section 3.1: Introduction to Determinants

A Definition of the Determinant
Suppose A is n X n and has elements a;;.
1. fn=1,A= [a1,1], and has determinant detA = a4 ;.
2. Inductive case: forn > 1,
detA = a;;detAy; —a; detAs, + -+ (—1)""ay , det Ay,
where 4; ; is the submatrix obtained by eliminating row i and columns j of A.

Example
* k% ok ok
* * * *
* * £ X x * * * *
— k3 k3 £ x £
A= :>A2,3 * % k%
k3 k3 £ x x
* * * *
* k% k%
Ex.1

T @2
Computedet[ccl Z]

det[(cl Z] = adefl; 13 b defl; 33 ad — bc

Ex.2
Notation det(4) = |A|

1 -5 0 1 -5 0
Computedet|2 4 -—-1|=12 4 -1
0 2 0 0 2 0

al - - - =5 - - -
| 4 -1 2 | -1
| 0 o | 0

 |Al = 1 x defly 1} (—=5) de#l ;} 0 de#( 3)

=3 J+slE +o=2

N
(e \)
SRS
——[B

Cofactor
Cofactors give us a more convenient notation for determinants.
Definition: Cofactor
The (i, j) cofactor of an n X n matrix A4 is
Ci,j = (—1)l+] detAi'j
The pattern for the negative signs is

+ - o+ -

; i ; t det(A) = a;; defly 1} a1, detly 7} -

- 4+ — 4 =a1,1C11 +a12015 +a33C 3+
Theorem

The determinant of a matrix A can be computed down any row or column of the matrix. For instance, down thejth column, the determinant is
det (A) = a1,1C11 + 15015 + a1 363+
This gives us a way to calculate determinants more efficiently

Ex.3
5 4 3 2
. 01 2 0
Compute the determinant of 0 -1 1 0
0O 1 1 3
A
|A| == 561]1 + 0C1,2 + 061'3 + 061'4
1 2 0
=5(-D* -1 1 0
1 1 3
=5x%x3x (33 =15x (=1)3*3 x _11 f =15x1x3 =45

~——————
1x1—(-1)x2=3

Triangular Matrices

Theorem

If A is a triangular matrix then
detA = a; a;,a33 " Ay p.



Ex.4
Compute the determinant of the matrix. Empty elements are zero.
2 1 .
2 1
2 1
2 1
2 1
2

1
2]
|Al =27 =128

Computational Efficiency
Note that computation of a co-factor expansion for an N X N matrix requires roughly N! multiplications.
e A 10 X 10 matrix requires roughly 10! = 3.6 million multiplications
e A 20 x 20 matrix requires 20! = 2.4 x 108 multiplications
Co-factor expansions may not be practical, but determinants are still useful.
¢ We will explore other methods for computing determinants that are more efficient.
¢ Determinants are very useful in multivariable calculus for solving certain integration problems.

Section 3.2: Properties of the Determinant

Row Operations
e We saw how determinants are difficult or impossible to compute with a cofactor expansion for large N.
* Row operations give us a more efficient way to compute determinants.

Theorem: Row Operations and the Determinant

Let A be a square matrix.
1. If a multiple of a row of A is added to another row produce B, then det B = det A.
2. If two rows are interchanged to produce B, then det B = — det A.
3. If one row of A is multiplied by a scalar k to produce B, then det B = —k det A.

A=(Ccl Z) |A| = ad — bc

1. R2<— Rz + kR1

a b _ _ _

i d+kb|—a(d+kb) b(c + ka) = |A|
2. RieR;

c d| _ _ _

a b|—cb ad = —|A]|
3. R1<—kR1

ka kb|:kad—kbc=k|A|

c d

Question: A € R3*3 |A] =3
124] = 8|4 = 24
1 0 0 3 00
IIGl=10 1 o0o|=1 |13l =10 3 0| =27
0 0 1 0 0 3
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¥

4 5 6

123]
7 8 9

M,z = [% g

Determinants

Let A be a n X n matrix
Let M; ; "(i, /) minor" be a matrix obtained by deleting the it" row, and the j* column
Let C;,j "(i, ) cofactor" is (—1)'+/ deﬂ(i,j)
det(A) = ay,1Cyq + a12C12 + -+ a1,Cip
= 031021 + 22052 + -+ ap2Chy

= |det(4)| = 4

Worksheet 3.1 to 3.3, Determinants
Worksheet Exercises

1.

Discuss the computational efficiency of computing det(A4) by cofactor expansion and by row operations. Which
method is computationally better if A isan X n and n is large? (Compare how many arithmetic operations it
takes).
For row operations, it would take N3 steps to compute det(A). For cofactor expansion, you would need N!
Steps. Hence, when N is large, or even greater than = 5.037, the row operations method would require less
steps and would therefore be more computationaly efficient.
Use a determinant to identify all values of t and k such that the are the matricies are singular. Assume that t and k
must be real numbers.

(35
a. A—(S o} ¢l

i. detA=B-1t)?-25=0=2t>—-6t—-16=0=(t—8)(t+2)=0=>t=-8,2

0 1 ¢
b. B= (—3 10 O)
0 5 &k

. detB=3|! f|=0=3k-15t=0= k=5t
a b & dlbea4 x4 matrix whose determinant is equal to 2. Compute the value of the determinant
i b 3¢ al
K Z dl=det=2
[d p 3¢ dl=det=2(-1)3)=-6
. . - __ 3 - __ 2 _ 1 _1 . .
R is the parallelogram determined by p; = (4)nd D, = (z}fA = (1 1,)\/hat is the area of the image of R
under the map ¥ — AX?
|3 2
4 2
b, detA:H _11|=1+1=2
c. Therefore the area of the image of R underthemap X » AXis2 X2 =4
T, = A%, where A € R?*2, is a linear transformation that first rotates vectors in R? counterclockwise by 8 radians
about the origin, then reflects them through the line x; = x,. By inspection, what is the value of the determinant of

A? You should compute its value to check your answer.
a. detd =detF xdetR=(—-1)(1) =-1

Let [
[

Lo

a. |detR| = =6-8|=2
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Notes:
Ex.1
1 -4 2
Compute|—-2 8 -9
-1 7 0
Ry« R,+2R{|]1 -4 2 0 0 -5
|A] = 0 0 -5(R,<=R|1 -4 -2[=(-1)x1x3x(=5)=15
Ry« R3+R, 10 3 2 0 3 2
Invertibility

Important practical implication: If A is reduced to echelon form, by r interchanges of rows and columns, then

4] = (=1)" X (product of pivots),when A is invertible
1o, ,when A is singular

E\E, Ey U:<x ’f)

A-> > > X
Ex.2 Compute the determinant

(2’ é ? —51) R, < R, +R, =7 ?1’R3<—R3—3R2
= 2 5 - ~
—2

3 6 2 6 2
R, & R4 _3 5

5 1 2 R3 < Ry

coco N
S Wk Ul
(N
I

=2%x1x(-3)x5=-30

Properties of the Determinant

For any square matrices A and B, we can show the following.
1. detA = detA”.
2. Aisinvertible if and only if det 4 # 0.
3. det(4B) = detA - detB.

2. and 3. combined: if 4 is invertbile, then
1

=l

474 = |2

JAlJA™Y = L] =1

Proof of (1):

EyEy  Ey UZ(’“ x)

A-> > >

"form": R3« R3+ 2R;

1 00 1 0 2
E=(0 1 0], ET=(0 1 0
2 0 1 0 0 1

|E| =1=I|ET|
"form": R3<—> R,

0 0 1
E=(0 1 0)=ET
1 0 O
Finally U = E, ...E;E{A
Using 3. |U| = |Ex| ... |E5||E1 || Al
UT — EkT ...EZTElTAT
IUT| = |E"| ... |E2"||ELT [IAT]
= |A| = |AT|  *we can do elementary row operations

Additional Example
Use a determinant to find all values of A such that matrix C is not invertible.

5 0 0
C=<O 0 1)—/Un
1 1 0

50 0 20 0 5-1 0 0
C—/Un=<0 1)—(0 2 0)=( 0 -2 1)
110 0 0 2 1 1 -2

C — AlL, is not invertible if |C — Al,| = 0

o

5-1 0 0 4
0 -1 1|=6-»|} |=6-DE-D=6E-DA-DA+1D);
1 1 -2

Hence, C — AL, is not invertible if A = +1 v 5

DD

coconN

S O Ul



Additional Example
Determine the value of

B 8
0 2 0
detA=det\(1 1 2
1 1 3
By the property of 3: |AB| = |B||A]|
- |B8| = |B|®
0 2 0
Bl=[1 1 2 =—2|1 §=—2
1 1 3

~ |A] = |B|® = (=2)® = 256
Section 3.3: Volume, Linear Transformation

Determinants, Area and Volume
In R?, determinants give us the area of a parallelogram.

(3) (2) (a+c,b+d)

a C

Area of parallelogram = det ((cl Z%: ad — bc

Area = Area(Large Rectangle) — Z(rea(l) + Area(2) + Area(3)§: (a+c)b+d)—2 G cd + %ab + bc)
=ad+ab+cd+bc—cd—ab—2bc =ad— bc

=|ab
c d
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Practice Worksheet

1 -2 0
1. Find the determinant of [0 0 3] viarow reducation
0 1 O
1 -2 0 1 -2 0
det[O 0 3]~—det[0 1 0]=—(3)=—3
0O 1 O 0 0 3

2. Let A € R™" be the matrix whose (i, j) entry is min{i, j}. Find det A
a. Testing for whenn = 1,2,3,4
b. det[1] =1

1 11 _ 1 17 _
C. det_1 2]—det[0 1 =1
1 1 1 1 1 1
d. det|1 2 2|=det|0 1 1|=1
1 2 3 0 0 1
1 11 1 1 1 11
1 2 2 2|_ 01 1 1|_
e. det1 5 3 3—det0 0 1 1—1
1 2 3 4 0 0 0 1
f. ~detA=1
. . 21131 1
3. Find the area of the triangle [3] , [4] , [4]
2 3 1
3 4 4

b. Substracting by |§| so that the origin is at (0,0)

e Jolly 7
ot 1
d. Hence, Area = %detH _11| = %(2) =1
4. Suppose A € R?*?, the entries in A are integers, and det A = 1. Then the entries of A~1 are also integers.
a. True
5. A € R™ " is one-to-one if and only if detA = 0.
a. False
6. A matrix A € R?*2 maps regions of area 1 to regions of area 2 if and only if det A = 2
a. False
7. Suppose A € R™"™ has a 0 diagonal. Then det4 = 0.
a. False
8. Suppose A € R™"™ and Col(A) is spanned by n — 1 vectors. Then det4A = 0
a. True

9. Complete the sentence "The more cheese, the more holes. The more holes, the less cheese. Therefore,
a. Cheese « # holes
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Notes:

Determinants as Area or Volume

Theorem

The volume of the parallel piped spanned by the columns of an n X n matrix A4 is |det A|.

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors @, cd + E,
for any scalar c.

a; a; + L
a, +caq
L
az
== caq 0
Ex.1
Calculate the area of the parallelogram determined by the points (—2,2), (0,3), (4, —1), (6,4)
(8,6)
(6,4) (2,5)
(0,3)
— 7@
(—2,-2) (6,1)
(0,0)
— - 2 6
Area=|li #l| = “5 1” — |—28| = 28

Linear Transformations

Theorem

If T,: R™ = R™, and S is some parallelogram in R", then
Volumé'ﬁ(S)% |det(A4)| - volume(S)

B € R™"™ - S: parallelogram spanned by the columns of B

AB
Volume (TA(S) |det A| - Volume(S) = |det A| - |det B|

|det AB| = |detA| - |det B|

Section 4.9: Applications to Markov Chains
Ex.1
¢ A small town has two libraries, A and B.
e After 1 month, among the books checked out of A.
o 80% returnedto A
o 20% returned to B
e After 1 month, among the books checked out of B.
o 30%returnedto A
o 70% returned to B
If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After n
month? A place to simulate this is http://setosa.io/markov/index.html|
0.8 0.7

~ . y
O« ()
u
0.2

Ex.1 Continued

The books are equally divided by between the two branches, denoted by X, = [g] What is the distribution after 1

month, call it X;? After two month?

x_)_(O.BxOA 0.3x¢B (0.8 0. _(0.55)
17\0.2x4 0.7x;B7 \0.2 0. 0.45

_, (0.8x0A 0.3%0B

— —_— — —_— — 2—)
*2=\0.2x,4 0.7x13% Pxy = P(Pxo) = P*X

After k months, the distribution is Xz, which is what in terms of x?

After k months:



Xr = Pkxg

Markov Chains
A few definitions:
* A probability vector is a vector, X, with non-negative elements that sum to 1.

1/
y 1/, 02
0Y /2
o Ex: ( ’ A s, e
1(1/2> 1?3 /4
2\,
e A stochastic matrix is a square matrix, P, whose columns are probabiltiy vectors.
* A Markov chain is a sequence of probability vectors, xj, and a stochastic matrix P, such that:
Xi+1 = Pxp, k=01,2,..
* Asteady-state vector for P is a probability vector ¢ such that Pg = ¢

Ex.2
Determine a steady-state vector for the stochastic matrix

(3 )

Steady-state vector: P§ =

Pi—i=0
(P-NG=0

—-0.2 0.3 0 -2 3 0. . s .
(02 —03 ‘0> <0 0 ‘0).lfreevarlable,Ilneofsolutlon

Example: X = (3s)eady—state vector:%(;} (82)

After a long time: 60% of books in A
40% of books in B

Convergence

We often want to know what happens to a process,
Xx+1 = PX, k=012,..

ask - oo

Definition: a stochastic matrix P is regular if there is some k such that P¥ only contains strictly positive entries.

Theorem
If P is a regular stochastic matrix, then P has a unique steady-state vector ¢, and X4, = PX converges to ¢ as k — oo.

0.8 03

02 0.7 regular

Ex:P=(

0 0 1

1 1
/3> P? = (1 :) not regular

1 0 0
P=|0 1 0]|- Pk foranyk — notregular
(o 7

0

1/3 0 1/4 * 0 =
P=(Y; 1 1, |=Pk= (* 1 *) - not regular
Y3 0 1Y, * 0
Yo Y5 s
P=|1, 15 2/ |- regularclaim: P? has no zero entry
0 13 ?/s
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Stochastic Vectors in the Plane
The stochastic vectors in the plane are the line segment below, and a stochastic matrix maps stochastic vectors to
themselves. Iterates PXx, converge to the steady state.

Steady State Vector
1
Xy
X3
Xo = {: Steady-state vector
P¥ o [ Xl k - oo
Xo
1

k - -
P* = (G 9
k—+o0
From the previous theorem"

Forany Xg: Xp:P*x; - @
“
k—+o0

TakexT,’=IT£= ((1))
N I

[Se9)
pkey k—+ 1St column of ey
Do the same thing with X, = &,: 2™ column of P¥
Ex.3
A car rental company has 3 rental locations, A, B, and C. Cars can be returned at any location. The table below gives the

pattern of rental and returns for a given week.

Rented from

Returned to | A B C
A 8 1 2
B 2 .6 3
C 0 3 5

There are 10 cars at each location today.
a) Construct a stochastic matrix, P, for this problem.
b) What happens to the distribution of cars after a long time? You may assume that P is regular.

8 1 2
P=12 6 3
0 3 5

Is P regular? YES
p? has no 0 entries
Pi=q (P-DG=0

—02 01 02 | ON\Ry«<Ry+Ry /=2 1 2 | ON\Rs<Rs+R,/—2 1 2 | O\R, «3R,+R,
02 —-04 03 |0 ~ 0 -3 5 |0 ~ 0 -3 510 ~
0 03 -0510 0o 3 510 o 0 olo

-6 0 11 0
0 -3 5 0
0 0 0 0
11
Xy = 6x2
5
X2 =5 X3



11
Takex; =6: ¥ =10

6
1 11
Then:|q = | 10

6

11
Solutionto PX = ¥: X = c(lO), c€R

6
S
The stochastic vectors in R3, are vectors [ t ], where 0 < s,t < 1ands 4+t < 1. P 'contracts' stochastic vectors
1—s—t
10 X oo
(1,0,0)

(0,0,1) (0,1,0)
Section 5.1: Eigenvectors and Eigenvalues

Eigenvectors and Eigenvalues
If A € R™", and thereisa ¥ # 0in R™, and
AV = AV
Then ¥ is an eigenvector for 4, and A € C is the corresponding eigenvalue.

Note that
o We will only consider square matrices.
e IfA €N, then

o when A > 0, AV and ¥ point in the same direction

o when 1< 0,Av and ¥ point in opposite directions
e Even when all entries of 4 and ¥ are real, A can be complex (a rotation of the plane has no real eigenvalues.)
¢ We explore complex eigenvalues in Section 5.5.

Ex.1
Which of the following are eigenvectors of A = G }?)\Nhat are the corresponding eigenvalues?

a) vy = (1)Av1 = (2%: 2V,

a. 7, is an eigenvector the eigenvalue 2.
b) U, = (_1)AU2 = (0%: 0172

a. v, is an eigenvector the eigenvalue 0.

) 7 = ()% = (o)

a. V3 is not an eigenvector. (it is 6)
d v, = (k)Av4 = (Zk%: 2v,
a. Av, = A(kvy) = kAv; = kQ2Qv]) = 2v,
b. If ¥ is an eigenvector for A, so is kv for any k # 0.
— (2\,— _ (2 2
e) vg = (O)Av5 = (2%71(0)

—_— .
a. Usls not an eigen vector
i (ATg = 7y + 73)

Ex.2
. o . (2 -4
Confirm that A = 3 is an eigenvalue of A = (_1 _1)
We look for ¥ # 0 such that AV = Av
AV = 37
(A-3DB=0

A—-3I= (_21 : }(g g (:1 :4 ingular

Then there exists & # 0 such that (A — 31)% = 0
Meaning: AV = 3¥

Eigenspace
Definition
Suppose A € R™™, The eigenvectors for a given A span a subspace of R" called the 1-eigenspace of A.

Note: the 1-eigenspace for matrix A is Nul(A — AI) = {eigenvectors} U {6}

Ex.3
Construct a basis for the eigenspaces for the matrix whose eigenvalues are given, and sketch the eigenvectors.
5 —6 _
(3 —4) A= 22
AX =X (A—ADX =0



< ¥ € Nul(x — A

A—eigenspace

Theorems
Proofs for the most these theorems are in Section 5.1. If time permits, we will explain or prove all/most of these
theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues.

2. Ainvertible & 0is not an eigenvalue of A.

3. Stochastic matrices have an eigenvalue equal to 1.

4. Ifvy,v,,..., Uy are eigenvectors that correspond to distinct eigenvalues, then v, 75, ..., U, are linearly

independent.
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Def: a matrix is regular if P™ has all positive entries for some n.

Y2 y */a
4

3
(o) Lo

e What's the probability of being sunny in many many days? 2/

R s
Yo Y
Transition matrix P = R [1 2 3 4]
S1Y2 /s
¢ What's the probability of it being sunny in 2 days given that it is rainy today?

P,
e Steady state: a vector x such that Px = x
1 1
~2 /4 ]~[1 —1/2]
=1, lo o
= x4 =%x2 = Xy = 2xq

X1+XZ:1
:>3X1=1:>x1=1/3$x2=2/3

1
Steady-state vector: (43)
3

Worksheet 4.9, Applications to Markov Chains

Worksheet Exercises
1. Determine whether P and Q are a regular stochastic matricies.

(39 o301 2]

31 2

Py 05 (5 B

1 2 0\/1 2 O 1 4 4
Q: (0 1 2J{0 1 2|=|6 3 6]YES
31 2/\3 1 2 9 9 6

2. Consider the Markov chain below

/2

What is the transition matrix? Calculate the steady-state vector.

Transition Matrix:

1/2 0 1/4

1/2 1/2 0

0 1/2 3/4

Steady-state vector calculation:

(P-Dx=0

_1

1/2 (1’ , o [-Y o 1/, 0
/2 =l 0 0=l o -1, 1, 0
o 1, —/4 0 0 0 0 0

_1/2xl+1/4X3 =>x1 = 1/2x3
_1/2x2+1/4x3 :>x2 = 1/2X3

1/2

55=x3 1

/
1
1
1
2

o

/a

3. Suppose there are two cities, X and Y. Every year,



o 70% of people from X stay in X, the remaining 30% move to Y.

o0 40% of people from Y stay in Y, the remaining 60% move to X.
The initial populations of X and Y are 100 and 200, respectively.

a. What is the stochastic matrix that represents this situation?

_[0.7 0.6
P=1lo3 0.4]
b. After along period of time, what is the population in city X?
(P-DE=0
_ _ _ 2/
A R AN Wl B BV A

= population of x; = 2/5 (total) = 2/5(300) = 200

4. Written Explanation Exercise Let P be a stochastic n X n matrix with positive entries. Give two methods of

finding the steady state solution
o Solve[P—1 | 0]
o Steady state is ~any column of P¥ for larger k (only true for regular)

5. A mouse lives in a maze that has at least three rooms. Each room is connected to at least one other room (in other
words, every room is connected). At every hour, the mouse moves from the room where it is in, to one of the
rooms it is connected to, with equal probability.

a. Design any mouse maze and its corresponding transition matrix P.

b. Isyour P regular stochastic?
No
c. Inthe longrun, is there a room that the mouse is more likely to be in at a given time? If so, which room?
Note: this problem is related to the PageRank problem that we explore later in this class

o 15 0

P=[1 0 1

o 15 0
-1 Y, o] Jo =Y 1| 1o -1 X1 = X3 /4
P-Dx=0=>|1 -1 1|(~]1 o0 -1 ~[o 1 -2 X =2x3 =1/,
0 1/2 -1 0 1/2 -1 0 0 0lxitxxtxz=1 1/4
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ForA, = —1:

A—/‘LlI:A+I=(§ :g)

{(%)s a basis for the (—1)-eigenspace

ForA; = 2:
A—111=A+1=(§ :2)
{(%)s a basis for the 2-eigenspace

X2

(—1)-eigenspace

2-eigenspace
% x

d1 * * d1 . *
1. T=< *) (T—ﬂ.])=< * )
(0) dy (0) dp — 2

(T — Al) is singular & 1 € {d,,d>, ..., dy,}
2. Invertible & A% = 0 how only the trivial solution ¥ = 0
& 0is not an eigenvalue
3. Proof by induction:
Ifk=2:77 5 4,0, > i 4 £ 4,
If ;1 + v, = 0 and ¢, #0

— C1 —>
Thenv; = — 27,
C2
A(Clv—l) + sz—z)) = ClAv—l) + CzAU—Z) = Clﬂ.lv—l) + 022,217—2) = —022,117—1) + Czlzv—z) =Cy (Az - 11)
— ——— e

0
= ¢, = 0= ¢; = 0:v5, v, are linearly independent

Warning!
We can’t determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Ex: suppose A = [1 ﬂ The eigenvalues are A = 2,0 because
=B -G
A [—1] = [1 1 [—1] - (09: 0 (1)

e But the reduced echelon form of 4 is: ((1) é)

e The reduced echelon form is triangular, and its eigenvalues are: 0 and 1 (triangular matrix)
Section 5.2: The Characteristic Equation

The Characteristic Polynomial
Recall
Ais an eigenvalue of A & (4 — Al) is not invertible
Therefore, to calculate the eigenvalues of A, we can solve
det(A—AI) =0
The quantity det(4 — AI) is the characteristic polynomial of A.
The quantity det(4A — AI) = 0 is the characteristic equation of A.

The roots of the characteristic polynomial are the eigenvalues of A.

Ex.1

The characteristic polynomial of A = (5 2i):

2 1
|A—/11|=[5;A 13/1]=(5—,1)(1—,1)—4=12—6,1+1

So the eigenvalues of A are:
/1_6i\/36—5_ +V32
B )

> =3+2V/2

3

Definition
A is a matrix
Trace(4) = sum of the elements of the diagonals

Characteristic Polynomial of 2 X 2 Matricies
Express the characteristic equation of

w-

———
#0

—

v

N

{

*

ol



In terms of its determinant. What is the equation when M is singular?
1A —2I| = [a:A ; 3,1] — (@=2)(d=2) —bc = 2% + (a+ d)A+ ad — bc = A% — Trace(M)A + det(M)
If the eigenvalues are A; and 4,

Theorem: A and AT have the same eigenvalues
Proof:
A=Al =|(A—2ADT| = |AT = AT| = |AT — Al
Application: If P is stochastic 1 is an eigenvalue of P
P: the sum of each columniis 1
PT: the sum of each row is 1

1 1
pT ( ) = () 1is an eigenvalue of PT and therefore also for P.

1 1
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if M is singular: detM =0
[M — AI| = A2 — Trace(M)A
= )i(— Trace(M))

Algebraic Multiplicity

Definition:
The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

ifl[A—A=QA-13@A+2)?21-7)

Eigenvalues Algebraic Multiplicity
1 3
-2 2
7 1
Ex.
Compute the algebraic multiplicities of the eigenvalues for the matrix
1 0 0 O
0 0 0O
0 0 -1 0
0 0 0 O
Eigenvalues Algebraic Multiplicity
-1 1
0 2
1 1

Geometric Multiplicity
Definition
The geometric multiplicity of an eigenvalue A is the dimension of Null(4 — AI)

1. Geometric multicity is always at least 1. It can be smaller then algebraic multiplicity

2. Here is the basic example

(0 1 -1 1]_ ;2
A_(o 0) 0 —,1|_’1
A = 0is the only eigenvalue. Its algebraic multiplicity is 2, but the geometric multiplicity is 1.

% € Null(4 — 0I) = Null(4)

3= (7=
&) ’

Ex.
Give an example of a 4 X 4 matrix with A = 0 the only eigenvalue, but the geometric multiplicity of A = 0 is one.
01 00
[0 0 1 0
4= 0 0 0 1
0 0 0O
— 1 free variable, dini}(ull(A)%: 1

Recall: Long-Term Behavior of Markov Chains
Recall:
¢ We often want to know what happens to a Markov Chain
Xp+1 = Pxy, k=012,..
ask - oo
e If P isregular, then there is a unique steady-state vector
Now lets ask:
¢ |f we don’t know whether P is regular, what else might we do to describe the long-term behavior of the system?
e What can eigenvalues tell us about the behavior of these systems?

Example: Eigenvalues and Markov Chains

Consider the Markov Chain
SN — 0.6 0. — 1
YT = PX = (04 ok k=0123.., X= (0)

This system can be represented schematically with two nodes, A and B:
0.6
0.4 0.6

Goal: use eigenvalues to describe the long-term behavior of our system.

0.4

What are the eigenvalues of P?

P=(o2 o5

P is stochasic: 1
/11 + AZ = 12' 0.2



What are the corresponding eigenvalues of P?
=1 (P—1 | 0):<—0.4 0.4 ‘ 0)

04 -04 0
—_— 1
e d 1}1 = (1)
,=02: (P-02] | 0)= <

~ V2= (—11)

04 04 0
04 04 0

Note: {v],7,} are a basis of R?

Use the eigenvalues and eigenvectors of P to analyze the long-term behavior of the system. In other words, determine
what x, tends to as k — oo.

Idea: express X, in the basis{ vy, Uy }:
“J —
11:1 12:0.2
x—o) = Clv—l) + sz—z)
x—l):Px—O):P(C1U—1)+C2U—2))
= Clplv_l) + Czpzv_z)
— —
= 61/11171 + CZAZUZ
—_ —_— — —>
xz = PZXO = P(C1/11171 + Czlzvz)
= Clllflv_l) + CZA%PZU_Z)
= CIAZ v_l) + Czlz v_z)
Xp = P* = 1,07 + 030,75
M=1k=1
but k—oo
L5 =02k S 0

Thus:
lim x;, = vy

. N——
our unique steady—state vector

if%=(1fp\)hereOSpS1

—

Xo = €11 + 2V
+
(Ipa@aCa(alo)
ci+c; =P
c4t—Cc=1—-P

_’C1:1/2r CZZP_l/z
Thus:

Uy = (1/2>
V1 1/2

Similar Matrices
Definition
Two n X n matrices A and B are similar if there is a matrix P so that A = PBP™1.
Theorem
If A and B are similar, then they have the same characteristic polynomial.
If time permits, we will explain or prove this theorem in lecture. Note:
¢ Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

4=(p (o o
|A—AI|=|_OA Ll=2=18-u

but PBP~! = (8 8)

— A and B are not similar
Proof
|A—AIl = |PBP~* = P(ADP~ Y| = |P(B—ADP~ Y| = |P||B = Al||P7Y| = |B — Al

Additional Examples
1. True or false
a. If Aissimilar to the identity matrix, then A is equal to the identity matrix.
i. fA=(PDHP1=pPp1=]
ii. True
b. A row replacement operation on a matrix does not change its eigenvalues.

-G DG o

ii. False
2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2?
a (—3 k )
"\2 -6 3k
i. "Highway": A = ( ) —6)

if /11 = /122 Al + 12 = Trace(A) =-9
then: det(4) = 18 — 2k = 11, =8/, > k= -9/,
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Def. A is an eigenvalue of A.

if A¥ = A% for some ¥ # 0.
Here, x is called an eigenvector.
(x, ) is an eigenpair.

How to find eigenvalues?
1 eigenvalue < AX = A% for some ¥ % 0.
& (A—AD% = 0some % # 0.
< A — Al notinvertible
< det(A—AI) =0.

The eigenvalues of A are given by zeros of p(1) = det(4 — AI), otherwise known as the characteristic polynomial of A.

Ex.
001
A=y ol
_ -1 1 2 _ )
p(1) = det([ 1 —ABE A*—1=(A+1)(A—1) = eigenvalues are 1 and -1 (alg. mult1)

Say A is an eigenvalue. Let S = {¥: AX = AX}. Then S is a subspace. The geometric multiplicity of A = dim(S).

Find X such that AX = A%
_4—:
(A-ADX=0

Worksheet 5.1 and 5.2: Eigenvectors and Eigenvalues, The Characteristic Equation

Worksheet Exercises
1. If possible, give an example of:
a. A2 X 2matrix, A € R?*2, whose eigenvalues have non-zero imaginary components.

i (_01 (1))

b. Anon-zero 2 X 2 matrix, A € R?*?, that is not triangular, but has a zero eigenvalue.

- ()

2. Determine whether 1 and ¥ are eigenvectors of A. If so, what are their eigenvalues? Do not find the characteristic polynomial.

-3 -3 2 -1 1
e
5 3 0 1 1
-3 -3 2\ /-1 2
wi=(s 4 o)(1)-(=)
5 3 0 1 -2

Eigenvalue = —2

-3 -3 2\ /1 —4
A17=<6 4 0><1>=<10>
5 3 0/ \1 8

No eigenvalue
3. Tis a linear transformation in R%. Without constructing 4, identify one eigenvalue of A.

a. T reflects points across the line x; = —x,.
A=1
b. T projects points onto one of the coordinate axes.
A=0
4. For what values of k (if any) does A have one real eigenvalue of algebraic multipliciy 2?
A= (—4 k )
2 =2
det(4 — AI) = |_42_A _2"_/1 = (—4-A)(-2-D)-2k=8+42+ 20+ 12 —2k =22 +61+8 -2k > k = 1/,
5. tr(A) is the sum of the elements on the main diagonal of A. If tr(4) = 2, det(4) = I, and A € R?>*?, compute the eigenvalues of A. Hint:
let A = (a b)
c d

a. A:[‘C‘ Z],p(l)=(a—l)(d—/l)—bczlz—(a+d)A+ad—bc=AZ—2/1+1=(/1—1)2

6. Written Explanation Exercise If Av = Av with v #= 0 annd 4 is invertible, can you find an eigenvalue/eigenvector of A~1? Can A has a zero
eigenvalue?
a. Av=Av (#0)

A MA=A" W =20=14v=2>A4A" W ==7

NN
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Review Session:
If A= PBP~'and BV = A%,
AW = AW such that w = P¥
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Material Covered:
Chapter 5: Eigenvalues and Eigenvectors
e Section 5.3 : Diagonalization
e Section 5.5 : Complex Eigenvalues
Chapter 10 : Finite-State Markov Chains
e Section 10.2 : The Steady-State Vector and Page Rank
Chapter 6: Orthogonality and Least Squares
e Section 6.1 : Inner Product, Length, and Orthogonality
e Section 6.2 : Orthogonal Sets
e Section 6.3 : Orthogonal Projections
e Section 6.4 : The Gram-Schmidt Process
e Section 6.5 : Least-Squares Problems
e Section 6.6 : Applications to Linear Models
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Notes:
Section 5.3: Diagonalization

Diagonal Matrices
A matrix is diagonal if the only non-zero elements, if any, are on the main diagonal.

The following are all diagonal matrices.

2o e o

WEe’'ll only be working with diagonal square matrices in this course.
1 0 0
D = <0 0 0)
0 0 5

Powers of Diagonal Matrices
If A is diagonal, then A is easy to compute. For example,

. (33 0(')5(’)) 0y (32 0O
4% = (ok 0.50(3) 0.5%: (0 (0.5)2)
At = (30 (0.%)’<)

But what if A is not diagonal?

Diagonalization

Suppose A € R™", We say that A is diagonalizable if it is similar to a diagonal matrix, D. That is, we can write
A=PDpP1
A%? = pDP~ppp~1 = pp?p-1

Ak = ppkp~1

Theorem:
If A is diagonalizable <& A has n linearly independent eigenvectors.

Note: the symbol & means "if and only if".

Also note that A = PDP~ ! if and only if
A
A2

—1-1

[U—l) U—Z) Un]

An

A=[v] v; - Tyl

Where U7, ..., U, are linearly independent eigenvectors, and 44, ..., 4,, are the corresponding eigenvalues (in order)

Proof:
If A has n linearly independent eigenvectors v, ..., U, for the eigen values 15, ..., A,,
— define P = (vy, ..., 7,): P is invertible
AP = (Avq, ..., Avy) = (A1Vq, oo, AnVy)
A 0)

M
PD = (7, v—n’)( ) = W77, e, A T7) D= )
An (0) An

AP = PD,A = PDP!

Ex.1
Diagonalize if possible

A:(g —61)

Eigenvalue: 2, —1
A =2:(A—2 | 0)=<8 6 ‘ 0)
— (1
Takevl—(o)
dp=—1:(A+1 | 0)=<g ° ‘ 0)
—_— _2
Takevz—(l)

Define: P = (é _1%) D= (g _01)
Then A = PDP1

=6 3l 26 )

Ex.2
Diagonalize if possible
_(3 1
B = (o 3)
Eigenvalue: 3
_ (0 1 0 .
(B-3I | 0)= (0 0 ‘ 0> — 1 free variable

dinNull(B — 313 1

B is not diagonizable



Distinct Eigenvalues
Theorem
If Aisn X n and has n disctinct eigenvalues, then A is diagonalizable.

Why does this theorem hold?
5.1: eigenvectors for distinct eigenvalues are linearly independent.
Is it necessary for an n X n matrix to have n distinct eigenvalues for it to be diagonalizable? NO!

(8 89 diagonizable

Non-Distinct Eigenvalues
Theorem. Suppose
e AisnXn
¢ A has distinct eigenvalues 14, ..., 4, k <n
e a; = algebraic multiplicity of 4;
¢ d; = dimension of A; eigenspace ("geometric multiplicity")
Then
1. d; <a;foralli
2. Aisdiagonalizable & 2d; = n & d; = a; forall d;i
3. Ais diagonalizable & the eigenvectors, for all eigenvalues, together form a basis for R™.

Ex.

[So NN
Il Il
/NN
S WO N
L2l o
wl

N
N

=
=y

=

Ex.3
The eigenvalues of A are A = 3,1. If possible, construct P and D such that AP = PD

7 4 16
A=| 2 5 8 )
-2 -2 =5

6 4 16 0 3 2 8 0 1 1 3 0
M=1.A-1 | 0)=]| 2 4 8 o|~11 2 4 0]~10 1 1 0
-2 -2 -6 0 1 1 3 0 0 0 O 0
-2
Null(4A —I) = Span| —1
1
4 2 =2 0 1 1 4 0
Ah=3:(A-3I | 0)=| 2 2 8 0|]~{0 0 O 0
-2 -2 -8 0 0 0 O 0

% € Null(4 — 3D) if

X1 —Xz —4x3 -1 4
)=( )=el) ()
X3 X3 0 1
-2 -1 -4 1 0 0
Now: P = (—1 1 0 ), D= <0 3 0): A=PDpP!

1 1 1

=

Additional Example
Note that

x—,g=(1) 1@’ x—0’=[ﬂ k=123, ..

Generates a well-known sequence of numbers

Use a diagonalization to find a matrix equation that gives the nt"* number in this sequence

x_o’-(ﬂ% (3
w=(0 03 (e r3 (3 G)
%= (3% =% = ()

1 ((1+V5\" [1-v5\"
| (559 (59

X, = PD"P~'x,
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Chapter 5.5: Complex Eigenvalues
Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square
roots of negative numbers. For example:

x2+1=0
The roots of this equation are:
+V-1

We usually write v—1 as i (for "imaginary").

Addition and Multiplication

The imaginary (or complex) numbers are denoted by C, where
C ={a + bila, b in R}

We can identify C with R?: a + bi < (a,b)

We can add and multiply complex numbers as follows:
2-3D)+(-1+i)=1-2i
2-3)(-1+i)=-2+2i+3i—3i’=1+5i

Complex Conjugate, Absolute Value, Polar Form
We can conjugate complex numbers: a + bi = a — bi

The absolute value of complex number: |a + bi| = Va2 + b2
We can write complex numbers in polar form: a + bi = r(cos(@) + i sin(@))

Complex Conjugate Properties
If x and y are complex numbers, ¥ € C", it can be shown that:

e x+y)=x+Yy
o AV = AV
e Im(xx) =0

1= De=Cye

3v, + 4v, 3_vl+4_vz vy

xx = (a + bi)(a — bi) = a? + b?

Ex. True or false: if x and y are complex numbers, then
(xy) =xy

True: xy = (a + bi)(c + di) = ac — bd + (ad — bc)i
xy = ac — bd — (ad — bc)i
xy = (a+ bi)(c —di) = ac — bd — (ad + bc)i

Applications: 2=xx=x2.x"=x"
l, P real polynomial: P(x) = P(x)
Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis
Im(z) z=x+1iy

Re(z)

zZ=x-—1y

Euler's Formula
Suppose z; has angle @1, and z, has angle @5.
Im(z)
Z3

The product z; z, has angle @; + @, and modulus |z||w|. Easy to remember using Euler's formula.
z = |z|e®®



The product z;z, is:
Z3 = 7173 :|£1|el(?£)|el®29: |lelzz|el(®1+®2)

Complex Number and Polynomials
Theorem: Fundamental Theorem of Algebra
Every polynomial of degree n has exactly n complex roots, counting multiplicity.

Theorem
1. If A € Cis aroot of a real polynomial p(x), then the conjugate Ais also a root of p(x).
2. If Ais an eigenvalue of real matrix A with eigenvector ¥, then Aisan eigenvalue of A with eigenvector 7.

Ex.
Four of the eigenvalues of a 7 X 7 matrixare —2,4 +i,—4 —i,and i.
What are the other eigenvalues?

Eigenvalues:
-2
44+i-4—-1i
—4—i—>—4+i
2-—i

Ex.3
The matrix that rotates vectors by @ = ™/, radians about the origin, and then scales (or dilates) vectors by r = V2, il
A= [r 0] [cos(@) —sin(@)] _ [1 —1]
0 rllsin(@) cos(@) 1 1
What are the eigenvalues of A? Express them in polar form.
— (cos(@) — sin(@))
sin(@)  cos(@)
[A—AI| = 2% =21 +2

2+v4-8 .
2= 5, = Ti
1+
1 1+i=+zels
1—i=+ze 1"
z = |z|et®
1-—1
Ex.
The matrix in the previous example is a special case of this matrix:

_(a -—b
¢= (b a )
Calculate the eigenvalues of C and express them in polar form.
|C —Al| = A2 — 2ad + a? + b?
2 +./4a? — 4(a? + b?
A1z = J 2( )=ai —b%2=atib

+ tan_1<2)
a

A =+a%+ b%e

—b
e a/\/aZ T b2 /,/aZ +b?7 | _ . (cos(@) — Siﬂ(@))

b/\/a2 — a/\/a2 — sin(@) cos(Q)

Diagonalization
Let A be a real 2 X 2 matrix with a complex eigenvalue A = a — bi (where b # 0) and associated eigenvector . Then we

may construct the diagonalization

A=pCcpt
where
P=(Re®) Im(@))andC = (Z _ab)

Note that following.
e (isreferred to as a rotation dilation matrix, because it is the composition of a rotation by @ and dilation by 7.
e The proof for why the columns of P are always linearly independent is a bit long, it goes beyond the scope of this
course.
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Worksheet 5.3, Diagonalization
Worksheet Exercises
1. Recall from lecture: matrix 4 is diagonalizable if it can be written as A = PDP~!
a. P is a matrix whose columns are linearly independent eigenvector of A
b. D is a diagonal matrix
c. The elements on the main diagonal of D are eigenvalues of A
d. A diagonal matrix is a matrix that in which nondiagonal entries are 0.
e. The geometric multiplicity of an eigenvalue is:
i dinh(ull(A — /11)99 how many linearly independent eigenvectors exist
f. A matrix can be diagonalized when the geometric multiplicities of all the eigenvalues:
i. Is equal to the algebraic multiplicity of eigenvalues
2. If possible, construct P and D so that A = PDP 1. Eigenvalues of A are given.

311
a. A=(1 3 1|,41=225

1 1 3
1 1 1
A-2I=(1 1 1
1 1 1
X1
Suppose ¥ = (xz) is an eigenvector for 1 = 2
X3
AV = 20U

(A-—2DB=AB—20=0

1 1 1 X1 1 1 1 0
(1] H 4)() 1 21| 4 5 1]=H
1 1 1 X3 1 1 1 0
~Ford=2,
1 0
S
-1 -1
-2 1 1
A—51= ( 1 -2 1 )
1 1 -2
X1
Suppose U = (X2> is an eigenvector for A =5
X3
Av =570
(A=-5DVv=Av—-5v=0
-2 1 1 X1 -2 1 1 0
( 1] [—2 [1])(x2>:x1 1 +x2 -2 +X3 1]:[0“
1 1 -2 X3 1 1 -2 0
~Ford =5,
1
-]
1

1 0 1\/2 0 0/1 o0 1n\1
A=l0 1 1]lo 2 ofJ]lo 1 1
-1 -1 1/\0 0 5/\-1 -1 1

_(1 3y _
b. A—(4 S} =25
A+21=(i g)
X
Suppose ¥ = % an eigenvector for A = —2
X2

AV = =20
(A—2DB=AB+20=0

0
(E) B Bl =L - o
-~ NOT DIAGONALIZABLE

c. A=((3) g)

3. If possible, give an example of:
a. Asingular 2 X 2 matrix in echelon form that can be diagonalized.
b. Asingular 2 X 2 matrix in echelon form that cannot be diagonalized.
c. Alinvertible 2 X 2 matrix in echelon form that can be diagonalized.
d. Ainvertible 2 X 2 matrix in echelon form that cannot be diagonalized.
4. Indicate whether the statements are true or false.
If A is diagonalizable, then so is A%.
If A2 is diagonalizable, then so is A.
5. Written Explanation Exercise Given an example of an upper triangular 4 X 4 matrix A such that O is its only eigenvalue and such that its
eigenspace is 3-dimensional. Explain why the eigenspace has dimension 3.

Worksheet 5.5, Complex Eigenvalues
Worksheet Exercises
1. Indicate whether the statements are true or false.
a. There exists a real 2 X 2 matrix with the eigenvalues i and 2i.
i. False
b. Every real 3 X 3 matrix must have a real eigenvalue.
i. True
2. Ais a composition of a rotation and a scaling. Give the angle of rotation, @, and the scale factor, r

a Az(x/? —1>:r(c05(®) —sin(®) \/5/2 -2
. 1 V3 sin(@)  cos(9) 1/2 \/§/2



b. @ ="/sr=2

3. LetA = (LzL _61}ind an invertible matrix P and a rotation-dilation matrix C such that A = PCP~1
1 . (4 -1
a. P CP_A_(2 6)
b. Solve 4
i. A=5+1i

ii. Choosed=5—1i

. (Re(®) Im) /5 1

i C_(Im(/l) Re(1) 2 s)
1

] [‘11 ¥ 0]
(o1 7)
4. Matrix A is a 2 X 2 matrix that satisfies the equality
a. A’ +2A = —6l,
I, is the 2 X 2 identity matrix. Compute the eigenvalues of A.

5. Written Explanation Exercise Can a 7 X 7 have 2 real eigenvalues and 5 non-real eigenvalues? If A is an n X n matrix and n matrix and n
is odd, why does A have a real eigenvalues?

U

iv.

el
I

V.
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:Efxp;ossible, construct matrices P and C such that AP = PC
a=( 5)

|A— AI| = A% — 41 + 5, eigenvalues: A zﬁz 241

Take2—ia—bia=2b=1"C=(} _ab)

¥ eigenvector forA: (A—AI | 0) = <_11+ ! 1_+2i ‘ 0)

First row: (=1 + i)x; = 2x,
For example, take x; = 2:x, = =1+

V= (—12+i (—21} i (2)
Forp = (_21 (1)%”‘1 C = (i _21)
Then, A = PCP~?
Section 10.2: The Steady-State Vector and PageRank

Steady State Vectors
Recall the car rental problem from our Section 4.9 lecture.

Problem
A car rental company has 3 rental locations, 4, B, and C.
Rented From

B

Returned To | B

>
o|N|w| >

C
2
3
.5

1
.6
3

There are 10 cars at each location today, what happens to the distribution of cars after a long time?

Long Term Behavior
Can use the transition matrix, P, to find the distribution of cars after 1
week:
X1 = PXg
The distribution of cars after 2 weeks is:
X; = PX; = PPXg
The distribution of cars after n weeks is:
X = P"xg

Long Term Behavior
To investigate the long-term behavior of a system that has a regular
transition matrix P, we could:
1. compute the steady-state vector, ¢, by solving § = Pq.
2. compute P™x, for large n.
3. compute P" for large n, each column of the resulting matrix is the steady-state

Theorem 1
If P is a regular m xm transition matrix with m > 2, then the following statements are all true.
1. There is a stochastic matrix I1 such that
lim P* =11
n—-oo
2. Each column of M is the same probability vector §.
3. For any initial probability vector xy,
lim P"x, = g
n-oo
4. P has a unique eigenvector, ¢, which has eigenvalue 2 = 1.
5. The eigenvalues of P satisfy |A]| < 1.
We will apply this theorem when solving PageRank problems.
vy, ..., Uy, basis of eigenvectors
for A4, ..., 4,
%o = €477 + - oy
ka_o) = Clllkv—l)‘l' -+ Cnlnkv—n)
|2]<1
Forj =2

Ex. 1
A set of web pages link to each other according to this diagram.

-7\



Page A has links to pages B and D.
Page B has links to pages A, C and D.
We make two assumptions:
a) A user on a page in this web is equally likely to go to any of the pages that their page links to.
b) If a useris on a page that does not link to other pages, the user stays at that page.
Use these assumptions to construct a Markov chain that represents how users navigate the above web.

Solution:
o I3 14 00
1 1
/> 0 /5 00
P = 0 1/3

00 0
1, 1 00 0
/2 /3 01 1
0 0

Transition Matrix, Importance, and PageRank
¢ The square matrix we constructed in the previous example is a transition matrix. It describes how users transition
between pages in the web.
» The steady-state vector, g, for the Markov-chain, can characterize the long-term behavior of users in a given web.
 If ¢ is unique, the importance of a page in a web is given by its corresponding entry in q.
e The PageRank is the ranking assigned to each page based on its importance. The highest ranked page has
PageRank 1, the second PageRank 2, and so on.
e Two pages with same importance receive the same PageRank (some other method would be needed to resolve
ties)
Is the transition matrix in Example 1 a regular matrix? NO

If column k is just points to row k, then the matrix is non-regular

0 0 0 0 0

0 0 0 0 0
x=|0]|>%=P|lo|=|0|>%5= P|o| =|0]|=¢

0 0 0 0 0

1 1 1 1 1

———
5th column of P™

Adjustment 1
If a user reaches a page that does not link to other pages, the user will choose any page in the web, with equal
probability, and move to that page.

Let’s denote this modified transition matrix as P,. Our transition matrix in Example 1 becomes:

1, 1 1
o 3 1, 0 o0 0 Y3 /0 s

1 1 1
1, o 1, 00 /2 0 /0 ) /5
P=lo Y3 000 |TH=| 0 13 O 01@
1/2 1/3 8 (1) (1) iy 1/3 00 -/

0 0 o o0 o0 1 1/

Adjustment 2
A user at any page will navigate to any page among those that their page links to with equal probability p, and to any
page in the web with equal probability 1 — p. The transition matrix becomes
G=,Ph+(1-pk
All the elements of the n X n matrix k are equal to /5.

p is referred to as the damping factor, Google is said to use p = 0.85.
With adjustments 1 and 2, our the Google matrix is:

(1/n 1/n>
L I
stoc{fstic 1/n 1/n

Naod . ———————————
probability p to follow the links ~ probability (1—p) to go wherever you want

0.030 0.313 0.425 0.030 0.200
0.425 0.030 0.425 0.030 0.200
G =10.030 0313 0.030 0.030 0.200
0.425 0.313 0.030 0.030 0.200
0.030 0.030 0.030 0.880 0.200

Computing Page Rank
» Because G is stochastic, for any initial probability vector xy,
e lim G"xy — q

n—-oo

e We can obtain steady-state evaluating G™x, for large n, by solving GG = g, or by evaluating X,, = Gx,,_; for large
n.

¢ Elements of the steady-state vector give the importance of each page in the web, which can be used to determine
PageRank.

¢ Largest element in steady-state vector corresponds to page with PageRank 1, second largest with PageRank 2, and



so on.
On an exam,

e problems that require a calculator will not be on your exam

e you may construct your G matrix using factions instead of decimal expansions
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u
G = P +1-p) Kk
ptransition matrix regulaization
o o 1/
pr=|1 2 0 1 3
1, 1 1y,

1/3 1/3 1/3

— 1/3 1/3 1/3

1/3 1/3 1/3
Solve (G—1 | 0)

Find a solution v to whose entries add to 1, v is a steady state

Say v is the steady.

2
E.G.v=[.5]:>v>w>u
3

(not the actual SS)

Worksheet 10.2, The Steady-State Vector and Page Rank
Worksheet Exercises
1. Aset of web pages link to each other according to this diagram.

a. Create the transition matrix, P, for this web.
o 13 1, 0 1
1 0 1 0 1
L P=| 9 1, 0 O /e
o 3 0 O s
o o o 1 1/
b. Construct the Google Matrix for this web, G. Use damping factor p = 0.85.

0.211

Ye o Yy 0.109

i G=085P,+095( i ~ i |, #=|0148
1 .1 .

s\

c. During an exam, to determine the page ranks of each page in the web a you would be given the steady-state
vector G. Because you are not taking an exam right now, compute the steady-state vector and page ranks of
each page on the web. You can use software.
Hint: For a web with only two pages that are linked to each other, we can compute the steady state using MATLAB
or Octave using these commands.

Pstar = 1/,[01;1 0]

=1/, x ones(2)

G=pxPstar+(1—p)*K

G'(100)
There are many free online Octave compilers.

2. Suppose p and q are real numbers on the open interval (0,1), and

r 1- q)
a=(
1-p ¢
a. Is A stochastic? Is A regular?
i. p=0.2,q=0.7(random #s to solution)
. (0.2 0.3
ii.

08 07 all positive entries; hence, A is stochastic and regular



b. By inspection, what is one eigenvalue of A?
i. Since A is stochastic and regular that means it has a unique steady-state which implies A = 1
c. Compute the steady-state vector of A.

L (A=1 | 0):><p_1 1=q ‘ 0>~<1 1_q/p—1 ‘ 0)

1-p qg-1 0 0 0 0

B (-1+¢q)
:t[—l q/p_l]Nl /(—2+q+p)
1 €

_ 1)/
(-2+q+p)
d. Compute the limit lim,,_,,, A™

(—1+q)/ (—1+q)/

(@+p-2) (@q+p-2)

(p—l)/ (p—l)/
(@q+p-—2) (q+p—2)

. Consider the dynamical system x;; = Ax,_,, k = 1,2,3, ..., where

5 .25 .25 1
A= <.25 5 .25),% = (o)
25 25 5 0

The eigenvalues of A are 1 and 1/,. Analyze the long-term behavior of the system. In other words, determine what
X tendstoas k - oo

i. >[5 v]=

x, = A¥x,
A= PDpt
1 1 1 1 1
p=l1 —2 1|, bp=| a
1 1 =2 1/4
) 1 1 1
Pt=4/301 -2 1
1 1 =2 )
. 10 0 1 - 171 /3
X = A¥xg =t = Akxgkg = PD¥P™1xg > P|0 0 0|P'xo={: - :|[o]=[1/3
0 0 0 1 - 1llo 1/
3
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Notes:
Construct the Google Matrix for the web below. Which page do you think will have the highest PageRank? How
would your result depend on the damping factor p? Use software to explore the questions.

1. Compute: P
1/4
1
G = 0.85P, + 0.15 1/4---
/4
1/4
2. Use a computer to find ¢ for G
00 0 1,
0 0 1
P, = 0 /4
11 0 1,
0 0 1 1/4
2. Columns of G™
0.13 200
> (013) > _ 1 [200
1=1034 )9~ 1509 | 540
0.41 654
PageRank
1. D
1) C
2) Aand B

Section 6.1: Inner Product, Length, and Orthogonality
Remark

(AB);; = Row(4,1).Col(B,))

The Dot Product
The dot product between two vectors, 1 and v in R", is defined as

%1
— = —)T—) 1}2
U-v=uv=_[U U - Un]| " =wuvs +upvy + -+ uptp.
vﬂ.
Ex.1: For what values of kis % - ¥ = 0?
-1 4
- | 3 S| 2
u=|( | V= ( 1
2 -3

—

U vV=—4+6+k—6=k—4

U-v=0=k=4

Properties of the Dot Product
The dot product is a special form of matrix multiplication, so it inherits linear properties.
Theorem (Basic Identities of Dot Product)
Let U, ¥, W be three vectors in R™, and ¢ € R.

1) (Symmetry)u-w=w-u

2) (Linearineachvector) W+ w) - U=V -Uu+w-u

3) (Scalars) (cu) - w = c(u - w)

4) (Positivity) % - = 0, and the dot product equals 0 iff i = 0

Ut =u 2 +up? + - + uy?

The Length of a Vector
Definition
The length of a vector 4 € R™ il
U V-1 = U2 + up? + o+ uy2

1
Ex. The length of (3) isvV12 + 32+ 22 =+/14
2

Ex.
Let i, ¥ be two vectors in R™ withil 5, v/3, and i - ¥ = —1.
Compute the value oftf|+ ||



d+ o=@+ D) @+ )
004U v+
=tf|l+ 21 -  +il|

=25—-2+3

=26

|+ Pll= V26

Cﬂz# \/CZulz + .-+ Czunz = w/CZ\/m = |Cﬂ"

Length of Vectors and Unit Vectors
Note: for any vector ¥ and scalar c, the length of c¥ is
P |l
Definition
If 7 € R™ has length one, we say it is a unit vector
For example, each of the following vectors are until vectors.

1
—_ N ._1n1 ._11p
el‘(a) y‘\/g(z) VA
1
Distance in R™
Definition
For i, v € R"™, the distance between % and v is given by the formula
|- vl

Example: Compute the distance from U = (Za)nd V= (3)
- 4’
Here:u — v = (_1)
Ul o V16 + 1 = V17

Orthogonality
Definition (Orthogonal Vectors)
Two vectors 1 and W ar e orthogonal if i - W = 0. This is equivalent to:

2
dl— W=+l
Note: The zero vector in R™ is orthogonal to every vector in R™. But we usually only mean non-zero vectors.
Ex.2

Sketch the subspace spanned by the set of all vectors ¥ that are orthogonal to v = (g)

X2
v

X1

- _ (%1

u_(xz)

1._1.) 17=0<:)3x1+2x2=0
I

v+ U=0c 1€ Nul®)

Orthogonal Compliments

Definitions

Let W be a subspace of R™. Vector Z € R" is orthogonal to W if Z is orthogonal to every vector in W.

He set of all vectors orthogonal to W is a subspace, the orthogonal compliment of W, or WT or 'W prep.'
Wl ={ZeR": Z-w=0VWweW}

Ex.3

Example: suppose A = (; 2)

e Col Aisthe spanofa; = (%)
e Col AT is the span of Z = (_21)

Sketch Null 4 and Null AT on the grid below.
x, NullAT

X1

Null A

Null (4) = Span (_31)
Null (4)* = Span (é)

Ex.4
2

Line L is a subspace of R3 spanned by ¥ = [ —1 |. Then the space L' is a place. Construct an equation of the
2



plane L*.

X1
u X2
X3

>
v

UuU-v=0x1 —x,+2x3=0

!

Row A4
Definition
Row A is a the space spanned by the rows of matrix A.
We can show that
+ dinRow(A)¥ dinfpol(4))
* A basis for Row A is a pivot rows of A
Note that Row(4) = Col(AT), but in general Row A and Col 4 are not related to each other

Ex.5
Describe the Null (4) is terms of an orthogonal subspace.

A vector X is in Null 4 if and only if

1. Ax=0

2. This means that X is orthogonal to each row of A

3. Row A is orthogonal to Null A

4. The dimension of Row A plus the dimension of Null A equals n (# columns)
Rank Theorem

din@ol(A)Y dinNull(A)F n
dinRow(4))

Theorem (The Four Subspaces)
For any A € R™ ", the orthogonal complement of Row 4 is Null 4, and the orthogonal complement of Col 4 is
Null AT
We know: Row (4) L Null (4) in R"
Apply to AT: Row (A7) L Null (4T) in R®
Col A
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Notes:
Angles
Theorem

a-b= |&||b| cos@.Thus,ifd-b = 0, then:
e dand/or b are 0 vectors, or d and b are orthogonal vectors.
For example, consider the vectors below.

- -
c a

al_))

"easy case": b is in the direction of the X1-axis
a ﬁ{{os 0 ;EH n 9)
b=([[2].0)

Thus: @ - b =ﬂﬂ:|os 6+0
Section 6.2: Orthogonal Sets
Orthogonal Vector Sets
Definition

A set of vectors {uy, ..., U, } are an orthogonal set of vectors if for each j # k, W L uy.

Ex: Fill in the missing entries to make {u7, U3, U3} and orthogonal set of vectors.

4 -2 0
u_)1=|:O], u_)2= O , u_)3=

-2
u_2’=<0)—>u_1)-u_2)——8+x
X
— 0 Ujruz =2
u3=(x> Uy, - U3 = 8z
z
- yisfree

Linear Independence
Let {u_{, ...,u_p’} be an orthogonal set of vectors. Then, for scalars ¢, ... Cp-

—2 2 2
dw + -+ iy ||= e 2ur” + -+ 02Uy
In particular, if all the vectors u, are non-zero, the set of vectors {u_l’, ,u_p’} are linearly independent.

14 14
i+ -+ ol () cat)( Yo

i=1 i=1

Butﬁ{~7j’=%‘zll ifi=j
0 ifi#]

2

= ¢, 3l -+ c, W
i=1

If none of the vector %3 is 0:

p

-

Assume: c1ly + - + Cpll, = 0
We haved|uy + - + cpﬁj”: GAG + -+ cpzﬁz
S0 =c="=¢=0
- Uy, ..., Uy are linearly independent

Orthogonal Bases
Basis {uy, ..., Uy} of W
WEW:W=ciy + -+ cplly

€1
Therﬂﬁ', ,uj(J : > =w
Cn

Theorem (Expansion in Orthogonal Basis)
Let {uy, ...,u_p’} be an orthogonal basis for a subspace W of R™. Then, for any vector w € W.
W - Clu—)l + -+ Cpu—p)
W uq
Above, the scalars are ¢ —.
a= Uq-ig
For example, any vector w € R3 can be written as a linear combination of {e7, €5, €3}, or some orthogonal basis

— — —>

{uy, uz, uz}l.

—

W=cu ++ cpup

1<q<p:w- uq = cluluq + -t cpupuq = cquq uq =0

Ex.



o) eefd) (i) ()

Let W be the subspace of R3 that is orthogonal to X.
a) Check that an orthogonal basis for W is given by 1 and ¥

- X=1-2+1=0:4€W
D-X=—14+0+1=0:DEW
U-v=-140+1=0: 4 ¥ linearly independent

— {u, ¥} isan orthogonal basis of W.
b) Compute the expansion s in basis W.

3
()
1
$.x=3—-4+1=0:3eW
- §=cu+cv
s-u 3+8+1 12 5
AT a 1+4+1 6
8B -341 -2 .
=53 1+1 2
—>|§=2U—-7v

Projections
Let U be a non-zero vector, and let ¥ be some other vector. The orthogonal prokection of ¥ onto the direction of i is the
vector in the span of % that is closest to .

<Y

=
.u_)

u

projzv =

<l

u-

The vector W = ¥ — projy ¥ is orthogonal to i, so that
U = projzv + w

il =pltoj 1l

gl

proj; v u Span{u}
i >

proj;v = Span{u}
- projv = ki, k € R

U-v=1u-(projzv + w)
=ki-u+u-w
u-v
- - -
u-u
Ex.
1
Let L be spanned by 1 = %
1
1. Calculate the projection of y = (—3,5,6, —4) onto line L.
., yru, —-3+5+6-4_
PRy =" ™ 1+1+1 *°¢
2. How close is y to the line L?
—4
- projgZHill— ik ‘5* =V16 + 16 + 25 + 25 = V82
-5
Definition

Definition (Orthonormal Basis)
An orthonormal basis for a subspace W is an orthogonal basis {u_’l, ...,u_p’} in which every vector Tq has unit length. In this
case, foreachw e W.

W= @ ug + - - 03
W |52+ - 7)
e

c, = =w-u,
g == . = q
Ug * Uq

Orthonormal (orthogonal + normal)
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Def. The dot product of U, Vis U - U = uyv; + -+ + up vy,

17 [-3
Ex.[Z]-’ 1‘ =1(=3) + 2(1) + 1(0)
1 lo

Def. 1 is orthogonal to v if i - ¥ = 0

Def. The length U istlf= Vi - U

Note: U - U = u 2 + - + u,?

Def. {u4, ..., u, } is orthogonal il
u;-u; =0foralli #j

¥ 1 foralli
Ex. {[(1)] , [2]} orthonormal

Prop. The projection of ¥ onto i is proj;¥ = =——u

1
1)

<l
!

The closest vector to ¥ in Span{u} is proj;v

Worksheet 6.1, Inner Product, Length, and Orthogonality
Worksheet Exercises
1. Fillin the blanks.

a. The distance between the vector il = (ge)nd the line spanned by w = ((1)9 projpu = LW =2 (1} (SI;} (g} (g]| (gl) =

w-w 1\0
JOZ+ (@) =3

1 1 -1
b. If W is the plane spanned by the vectors i = (1) and U = ( 0 ), a basis of W+ is given by w = ( 2 )
11 1 111 1 -1

w = Col[1 0 _1],WJ‘ = Null[1 0 _1]
c. IfV ={x € R3|x; +x, =x3},thendimV = 2,anddimV+ = 1.

V=Nulll1 1 -1]

= dim(V) =2

= dim(V') =dim(Row[1 1 —-1]) =1

dim(V) + dim(V) =n

X

2. W is the set of all vectors of the form ( y ) Which of the vectors are in WL?
x+y

(3 =) =)

3. True or False
a. If X € Null(4), then X is orthogonal to the rows of matrix A.
i. True
b. If 4 and ¥ are non-zero orthogonal vectors, then they are linearly independent.
i. True

Worksheet 6.2, Orthogonal Sets
Worksheet Exercises
1. Indicate whether the statements are true or false
a. If the columns of an n X n matrix A are orthonormal, then the linear mapping X — AX preserves lengths.
i. True
b. If P is a stochastic matrix, then the columns of P have unit length.
i. False
2. Write y as the sum of a vector parallel to i and a vector perpendicular to u.

-1 5
10 1

3. Find the coordinates for ¥ in the subspace spanned by the orthogonal vectors u; and u,.

0 1 6
-3/ \2 ~10

o, vru; _, 4
07V == ————=U; = <-U
5. . 65

r0jim¥ = ——=1U, = u
p ]uz uz . uz 2 185 2
. 4 65
Coordinates: (—,—)
9’185

4. Give examples of the following.

a. A matrix, 4, in RREF, such that dim ow(Aj'» 1 and dim @)I(Ab} 2.
dim ow(A)L%E 1 = A has 1 free variable

dim ol(Aj')} 2 = A" has 2 free variables

1 0
A=(0 0
0 0

1
b. Two linearly independent vectors R3, 1 and ¥, such that i - ¥ = ¥ - ¥ = 0, where X = (1)

1
-1 1
i=(1]) v=(0
0 -1



1
. A 3 X 3 matrix in RREF, 4, such thaﬂ\(ull(Aj)is spanned by ( 0 )

-2
1 0 -2
A=10 0 O
0 0 O

1 0
. A non-zero vector, W, whose projection Col(4) is W, where A = (0 0).
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Notes:

Example

The subspace W is a subspace of R3 perpendicular to x = (1,1,1). Calculate the missing coefficients in the orthonormal
basis for W.

1[(1)] 1 12
Uu=-— v=—|—
vZ|_4 V6| 4

<:>x1—x3

Orthogonal Matrices
An orthogonal matrix is a square matrix whose columns are orthonormal
Theorem
An m X n matrix U has orthonormal columns if and only if UTU = I,,.
Can U have orthonormal columns if n > m? NO (needs to be linearly independent)

Proof:
U matrix with columns uy, ..., u,,
—_— — —_— — —_— —
uloul ulcuz e ulnun
UTy = | Y2t Uz Uz 0 Uz Uy

-1 = < i<
UTUzlnﬁﬁh 1for1._l_n
u;-u, =0fori#k

- IfUissquare U™t = UT

Theorem

Assume m X n matrix U has orthonormal columns. Then,
1. (Preserves length)ic# X
2. (Preserves angle) (UX) - (Uy) =X -y
3. (Preserves orthogonality) Ux - Uy =0 & x-y =0

Proof:
2. (UD)- Uy =W WH=x"VUj=%J=%7
In
From 2 we have,
U= UZ - UZ = % - % =A|
Example
Compute the length of the vector below.
-1 2 -
/2 Iy
1 1
2 |y ¥
1 -3 -3
2 "
Y, o
Y, /i
1 1
1/2 and /\/ﬁ are orthonormal
/2 —3/m
1, 0
- 1 2 -
/2 /m
1/ 1
o Pl et B Ted R
v }
_1/2 0

Section 6.3: Orthogonal Projections

Ex.1
Let Uy, ..., Us be an orthonormal basis for R®. Let W = Span(u;,u5). For a vector yj € R, write y = § + w, where § €
Wandwt € WT.

y € R® and {uy, ..., u:} basis of R®
Y = CUq + Cuy + c3Uz + culiy + CsUs

Cq=Y-ugforl<q<5

Y = iUy + cUy + c3Uz + culiy + CsUs

Ew ewT
- ~
y=9+wTl
J =ciu; +cuy EW
1Ug + Uy
— — —
wTl = c3uz + iy + csus € wT

Remark:
fyeW:y=9wt=0



—

0,y =wt

ify ewt:9

Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of R™. Then, each vector y € R™ has the unique decomposition
y=9+whtyew wtew

And, if U7, ..., U, is any orthogonal basis for W'

N YU, y-olUp
y_—> —>u1 '+—> —>up
1" %1 Up - Up

We say that J is the orthogonal projection of y onto W.

Explanation
We can write

— wt is orthogonal to uy, ..., U,
wtewt

4 2 0
y=(0] uy=[(2) u;=1{0
3 0 1

Construct the decomposition y = § + w' where J is the orthogonal projection of y onto the subspace W =
Span{uy, uz}.
youi _, Y-u; __, 8

2
3
==+t =—=u, = +-u, = +3u, EW =12
y Lot gt Tgh T 1 2 (3)

oerr- (3

Check: wt - =wt-u; =0ew+t

Best Approximation Theorem

Theorem
Let W be a subspace of R", y € R™, and ¥ is the orthogonal projection of y onto W. Then for any w # y € W, we have
M= = wil

That is, ¥ is the unique vector in W that is closest to y.

Proof

The orthogonal projection of y onto W is the closest point in W to y
TEW y—p=wtewt
VEY V—JEW

Pythagorean Theorem:
2 2 2
M= 2lI=l— y1Hdl= 7l

*0
= ZI>3- Fli=ll— il 91l
Ex.2b

4 2 0
y= 0>, u = 2>, U, = 0)
3 0 1

What is the distance between y and subspace W = Span{uy, u,}? Note that these are the same vectors in Ex.2a
The distance between ¥ and subspace W isifif V8 = 2v2

A% = b is consistent iff b € Col(A)
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Gram-Schmidt:
* Process for converting basis to an orthonormal one
¢ |dea: successively subtract projection of current vector onto previous ones
e Start with basis {vy, ..., 7, }

v, =%

7= — 2 Ve

2 2 v—1>‘v—1> 1
—

— —_— —
X3:Vi_, X3 Vy_,
V3 =X3 — =S =V — ==

V11 Uy - V>
—_— — —
=% xn'vlv—> Xn " Up—1 7
n—4An = VT T = — -1
1ZBR %! vp—l . vp—l p

Worksheet 6.3 and 6.4: Orthogonal Projections, The Gram-Schmidt Process

0 1 -1
1. 5; B 2)’ Tl B 1)’ u_)z B 1 )
4 0 0

a. Determine whether u; and U,
i. Are linearly independent

1) True

ii. Are mutually orthogonal
1) True

iii. Are orthonormal
1) False

iv. Span R3
1) False

b. Isyin W = Span(uy,u;)
i. False

c. Compute the vector, § € W, that most closely appromixmates y.

0
i. ¥ =projpy = proj;y + proj;y = (2)
0
d. Construct a vector, Z, that is in W+

1 5
2. Compute the QR decomposition of A = ( 3 1)

-2 4
a. A = QR, Q has orthonomal columns; R upper triangular
b. To find Q, run G-S on columns of A to get Q = {vy, ..., U}

(1 1 (1
<= (3) =)

5 1 5 5
o wi=(1)5(3)- ()=l

4 14 =2 4 m4

Y /

Viz Va2

3 1
e =\~ i

-2 4

/ /
\/1_%1/ \/4_23/ —2/ 1 5 14/ 0
Vid  N1a m(g 1>= Vi4
5 1 4 5
lm m e ° I

f. R=QTA =
-2 4
3. {v{,v5,v3}is an orthogonal basis for subspace V. Classify each set as a bassi for V, an orthogonal basis for V, or not a basis for V.
a. {3v3,2v1,7v;}
i. Bvy)-Qv)=6m5-v;50
(=)
ii. = Orthogonal basis
b. {(v{ +v2), W1 —v3), 73}
L U+ 7)) (T =) = vy v — vy vy vy vy — vy - vy =tf Il O
ii. = Not necessarly an orthogonal basis
c. {(V]+7v7), (v —vz),Ws—v1)}
L U+ 7) (U —T) =y vy — vy -V F v vy — vy v =fIHl ]l O
ii. = Not necessarly an orthogonal basis
4. Indicate whether he statement are true or false.
a. If yisin subspace W, the orthogonal projection of y onto W is y
i. True
b. If cis orthogonal to ¥ and W, then X is also orthogonal to ¥ — w
i. True
5. If possible, give an example of:

2
a. Two linearly independent vectors that are orthogonal to ( 0 )
-1
1 0
i. (0],11
2 0
b. A subspace of R3, S, such that dim(S+) = 2

i

6. Written Explanation Exercise Let u4, ..., U; be an orthonormal family of vectors in R™. Explain why applying the Gram-Schmidt process
to the pivotal columns of the n X (n + k) matrix A = [u, ... uxe; ... e,] gives an orthonormal basis of R™ that contains uy, ..., U.
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Notes:
Section 6.4: The Gram-Schmidt Process

Ex.1
The vectors below span a subspace W of ]R4 Construct an orthogonal basis for W.

1
_ |1 1 72 = 0
1 1 1

Idea: W, = Span(x;)
WZ = Span(x—l)r x—Z))
W, = Span(xy,x3,x3) = W
1. Orthogonal basis for W;
>V =X
2. Orthogonal basis for W,
V; = X; — projyx;

-3

_ — [ 1
Trick: take v, = ( 1
1

3. Orthogonal basis for W5

— —_— — O
o = X3:Vi_, X3V, 1[_o
V3 =X pI'OJWx3—x3 —V1—= SV2=7

287! U2 V2 1

1
0
- — _ | -2
Trick: take v3 = 1
1

— {v,V5,V3} is an orthogonal basis of W

The Gram-Schmidt Process
Given a basis {x_l’, ...,@} for a subspace W of R", iteratively define

— —
v1=x1
—
oo x_>_x2'v1ﬁ
2 2 17—1)'17—1) 1
—_ — —

Proof
— See example 1

Geometric Interpretation
Suppose X7, X5, X5 are linearly independent vectors in R3. We wish to construct an orthogonal basis for the space that
they span.

We construct vectors vy, U, V3, which form our orthogonal basis. W, = Span(vy), W, = Span(vy,v3)
Orthonormal Bases

Definition

A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.

Example
The two vectors below form an orthogonal basis for a subspace W. Obtain an orthonormal basis for /.

-2
1
{F[ ] \/_[ B is an orthonormal basis for W

QR Factorization

Theorem
Any m X n matrix A with linearly independent columns has the QR factorization
A=QR

Where



1. Qism X n, its columns are an orthonormal basis for Col(A)
2. Risn X n, upper triangular, with positive entries on its diagonal, and the length of the j* column of R is equal to
the length of the jt* column of A.

Proof
A=(aj, .., a;):aj,..,a, linearly independent
Q =(q1,-,9%) : Q1 ---» Gy orthonormal basis for Col(A4)
Obtained by Gram-Schmidt
Section 6.3: decomposition of a matrix in an orthonormal basis:

=0 q) @G ="1"qQ
—

=02 q) 9+ @z q@) @ +=T12 @ + 732" 2
=0
tif r,, < 0: change g5 change —q; in Q

= @ @) Tt o+ @ T T =Tin T Ty T

#0
i1 T2 " Tin
Define: R = (0)' .t =077
Tnn
QR = Qry Qr,
) )
T11 o Tin
Q’f( 0 )=T11-q1=q1 o o e T
0 nn an

- A=QR
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Notes:
Ex.

Construct the QR decomposition for A =

3 -2
2 3|=(@ a)

0 1 a;-a;=0
Why?: A% = b
QRZ =1
- R%=QTh

N———_—_—_—_—_——
triangular system

3/ ~2/
Vi3 Vi4
Q= Z/m 3/m

1
0 /\/ﬁ
3 2
el Y 3 2
/\/ﬁ /\/ﬁ /m 0 1 0 Vi4

Further Example

1 -1 -1
. _10 0 2
Construct the QR decomposition for A = 11 -3
1 0 1
* orthogonal basis of Col(A): vy, v,, V3
1
—_— — 0
v1=a1= _1
1
_1/
L -1 , 1 0 3 -1
— = G2V, 0 - 0 — 0
= Bl = —_— = ’t k =
vz az ’1]1 . ’171 Ul é 3 _11 1/3 a evz ;
2/3
. . -1 1 =2 -1
— - Q3°V;_, Q3-Vy;_, 0 — 2 —
v3—a3—v_1, o 1—v_2, v_z,v2= 23 1 —0v, = 2 ,take v3 = 1
1 1 0 0
ls Y 7Y
V3 V6 V3
1
0 0 /\/§
T s Y Y
V3 V6 V3
1 2 0
s e
1 0 -1 1 V3 2 V3
/\/§ /\/§ /\/§ 1 -1 -1 /\/§
_ Aty _ | —1 0 1 2 0 O 21_1o0 2 0
SR=Q"=| /g e Nell-11 J3)= NG
-1 1 -1 0 1 1 0 0 6
lg Y Y /2

Check7{[# §+§ =2 =dpl|

i 3+ = V5 =dj

If you find Q and

1 * *
R = (0 -2 *>
0 0 3

C—ZCZ<——CZ §1R2<——R2

1 0 0y/1 0 O
A=QR=Q|0 -1 0]J({0 -1 O]R
0 0 1/\N0 0 1

Section 6.5: Least-Square Problems

Inconsistent Systems
Suppose we want to construct a line of the form
y=mx+b
that best fits the data below
-(3,3)
-(2,2.5)

-(LD)
-(0,0.5)



0] TU5]
{121-
3 3

Can we ‘solve’ this inconsistent system?

(NN

fy=mx+b

First Part: (x,y) = (0,0.5):0.5=bh

Second Part: (x,y) = (1,1):1=m+b=>m=0.5

Third Part: (x,y) = (2,2.5):25=2m+b = NO
=15

The Least Squares Solution to a Linear System
Definition: Least Squares Solution

Let A be am X n matrix. A least squares solution to AX = b is the solution % for which
Bl Ak a|

forall x € R™.
If X is a solution:

Bl azfl o
Here: if the system is inconsistent:
Y- Az} 0 vieR®
Least-Square solution: X:

H|- AzkH|- A%fy% € R
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Notes:
A Geometric Interpretation

The vector b is closer to A% than to A% for all other % € Col(A).
1. If b € Col(A), then % is a solution to AX = b
2. Seek % so that A% is as close to b as possible. That is, & should solve A% = b where b is the orthogonal projection of
b onto Col(4)

The Normal Equations
Theorem (Normal Equations for Least Squares)

The least squares solutions to AX = b coincide with the solutions to
ATAZ = ATh

Normal Equations
Derivation
1. Xisthe least squares solution, is equivalent to b— A% is orthogonal to Col(4) and:()l(Aj')= Null(4)
2. Avector ¥ isl\(ull(A)L)if andonly if AT3 =0

3. So we obtain the Normal Equations:
X least square solution

Iff b — A% € Null(AT)

Iff AB(— AZ¥ 0
Iff ATA% = ATb

R —
Normal Equations

Ex.
Compute the least squares solution to AX = B, where

4 0 2
A=10 2], E:[ol
11 11
Solution:
ara=[t 1][ ] 7 1y
wi= 3 o)

The normal equations ATA% = ATb because
17 1y (19
( 1 59 B (11)

=g )

T85-1\-1 17
- 1 - 9
TAE Q(—1 1;011
Theorem

Theorem (Unique Solutions for Least Squares)
Let A be any m X n matrix. These statements are equivalent.
1. The equation AX = b has a unique least-squares solution for each b € R™.
2. The columns of A are linearly independent.
3. The matrix ATA is invertible.
And, if these statemetns hold, the least square solution is
%= (ATA)"ATh
Use heuristic: AT A plays the role of ‘length-squared’ of the matrix A.

Ex.2
Compute the least squares solution to A% = b

1 —1
_|1
A_11’
1 7

Hint: the columns of A are orthogonal.
A= (a; @):linearly independent (unique least-square solution), easy to compute b

pob @ ba_ 8 45 1_
= —=—a ———da, = —a —a, = 4a —a
a - aq 1 a, - ap 2 4 L 90 2 1 2 2
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Notes:
Theorem (Least Squares and QR decomposition. Then for each b € R™ the equation AX = b has the unique least
squares solution
Rz = QTb.
(Remember, R is upper triangular, so the equation above is solved by back-substitution.)
A=QR
Normal Equations: ATA% = ATh
RTQTQRX = RTQTh
RTR% = RTQTb

R% =QTh
Ex.3 Compute the least squares solution to AX = B, where
1 3 5 [ 3
11 1 0 7_|5
4= 1 1 2| b= 7
1 3 3 | —3
Solution. The QR decomposition of A is
1 1 _11 _11 2 4 5
A=QR= ol -1 1 0 2 3
1 1 -1 0 0 2l

v 3 33

And then we solve by backend substitution RX = QTB
2 4 5] 6 X3 = 2 10
b2 bl )
0 0 21lx3 4 x; =10 2

Section 6.6: Applications to Linear Models

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.
1. Black circles are data.
2. Bluelineis the least squares line.
3. Lengths of red lines are the residuals

The least squares line minimizes the sum of squares of the residuals

Ex.1 Compute the least squares line y = By + f1x that best fits the data
X 2 5 7 8
Y 1 1 4 3

We want to solve

1 2 1]
15[30]:1
1 7|1pd " |4
1 8 3]

This is a least-squares problem: XE =y

1 2]
The normal equations areXTX=[% ; El}] % ; _[22 142
11 8]
1
ro_[1 1 1 1|1 _719
3

So the least-squares solution is given by:

B
[22 142 ﬁg] - [599]

y=PFot+pix=—o-+—-x
As we may have guessed, 3, is negative, and f3; is positive.

Least Squares Fitting for Other Curves
We con consider the least squares fitting for the form

y=cotcfilx) +ce+cafp(0) + o+ e+ crfi(x)
If functions f; are known, this is a linear problem in the c; variables.

Ex.
Consider the data in the table below
X 1 0 0 1
Y 2 1 0 6
Determine the coefficients ¢; and c, for the curve y = c;x + c,x? that best fits the data.
xp=y
: Bo
1 x; cos(xy) sin(xq) B ()’1)
: : : : L]1=|(:
1 x, cos(x,) sin(x,) gz Yn
3

Normal Equations



XTX=( 1 0
3=(7 g

—_
(e)
o o
P
I
[N

C 0% e=2c-4

0 2
Projection method:

y = Proj 5’)=}7.x—1)x Y x_z’x
Col(4) X b xy e xy
4_, 8_, 2
=§x1+§x2=X(4

-e-(3)
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Least Squares:
Want to solve A% = b but this system is inconsistent. Instead, find X to minimizefﬂ)? — B”
Def. & is a least squares solution to AX = b if4|>? - BH:AP? - B|

If A has linearly independent columns, then £ = (ATA)~*ATh

Suppose A4 has independent columns. A = QR, Q = [u; ...u,,| which forms {u7, ..., U, } orthonormal basis for Col(4)
R R L B, @b R
= b = Projcol(a)b = Projgzb + -+ Projgb = - by + - i - by = Q [ : q] =QQ"h
Uy - b
A2 = QQTb = ATA%® = ATQQTb = RTQTQQTh = ATh = % = (ATA)"*ATh

Worksheet 6.5 and 6.6: Least-Squares Problems, Applications to Linear Models
Worksheet Exercises

1. Fillin the blanks. These questions concern that least squares solution X to AX = b.
a. IfA=QR,then ATA=RTR.
b. If the columns of A are linearly independent, then £ = (ATA)~1ATh
c. Ifbisin the column space of 4, then AX = b.
d. If A = QR, then R is invertible then £ = R"1QTh
2. These questions concern the least squares solution X to AX = b. Indicate whether the statements are true or false.

a. The solution X is chosen so that AX is close as possible to b.
i. True

b. If§ # % thendft — bikAp — b|
i. False
ii. (A dependent columns)

c. If the columns of A are linearly independent, then the least squares solution is unique.
i. True

3. Use the QR decomposition to calculate the least squares solution to AX = b.
2 _1
— —|2 2 -
vans| )69 5()
/3 =3

ot 2y Yy Yy \(T
~re= gt = (3 §=<_1Z 5 _2;3)<3)=(g Y= (TFn=trm=-1-(*)

1
X X
4. Written Explanation Exercise Explain step by step how to find the best fit line for a collection of n data points [}’i] ) ey [y’;] in R?. Why is

the best fit line ungiue?

X1 1 Y1 x 1 a Y1
Lineof bestfitty =ax+b,a| : [+ b|1|= 5]:[5 S][b]:li
Xk 1 Yk x 1 Yk
5. Four points in R3 with coordinates (x, y, z) are give in the table below.
a. x —1021
b. y 2102

c. z 910 -1
Determine the coefficients ¢; and ¢, for the plane z = ¢y x + ¢,y that best fits the data. Hint: normal eqautions.
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TorF
¢ Therange of T(x) = Ax is Row(4)
o False! range of T(x) = Ax is Col(4)

1 2 3

A:[o 00

1
Alo| = [*] € Range(r)

(1) 1[()]6 ange

Alol =1 +0[?]+1[3] € colca)
But [2 1] +0f+1[] e co

dinRow(A)F dingol(4))
o True (both are the # of pivots)

Given a subspace S and a vector b, there is a unique x € S that minimizesq|— b||
o True (the minimizer is just Projsb)

If Aisn X n and invertible, then A is diagonalizable.

o False <(1 %ounterexample)

* p(A1) =det(4 — AI) = (1 — 1)? = 1is an eigenvalue of alg. mult. 2
* |sgeom(1) = 2?
o A—I~ (8 é%b geom(1) = 1.
o Since geom(1) < alg(1), A is not diagonalizable
e Aisn X n and has n distinct eigenvalues, then A is diagonalizable
o True (alg(1) = 1forall A.Since 1 < geom(4) < alg(1), geom(1) = 1forall 1)
Def. A is diagonalizable if A = PDP~1 where D is diagonal.

Review Worksheet Exam 3
1. State True or False:
a. A matrix A € R*** which has eigenvalues 0, 1, 2, 3 is diagonalizable.
i. True
b. There exists a matrix A € R3*3 with eigenvalues i,i + 1,1.
i. False
c. Ifu, v are orthogonal vectors thenZi — 3v2l + 3v||
i. True
d. A least squares solution X for the system Ax = b satisfies AX = b if and only if b € Col(4).
i. True
2. Use Gram Schmidt to find an orthonormal basis for the space spanned by the following vectors:

G 0
&) =) =)

3. Find the best fit line y = mx + b for the following data:

X 1 2 3 4
Y 3 1 -1 5
4 -3 -3
4. Find matrices P and D such that P is invertible, D is diagonal, and A = PDP~1, where A=| 3 —2 —3 |. The characteristic
-1 1 2

polynomial of A is p,(t) = —(t — 1)%(t — 2).

5. Find matrices P and C such that P is invertible, C is a rotation-dilation matrix, and A = PCP~1, where A = (i _12)
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Material Covered:
Chapter 7: Symmetric Matrices and Quadratic Forms
e Section 7.1 : Diagonalization of Symmetric Matrices
e Section 7.2 : Quadratic Forms
e Section 7.3 : Constrained Optimization
e Section 7.4 : The Singular Value Decomposition
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Notes:
Section 7.1: Diagonalization of Symmetrix Matrices

Symmetric Matrices

Definition

Matrix A4 is symmetric if AT = A

Ex. Which of the following matrices are symmetric? Symbols * and * represent real numbers.

AT A is Symmetric
A very common example: For any matrix A with columns a4, .., a,

T T T T

- a1 - | | | a; a; G Qa - 04p Gy

T - azT - T T T azTa1 azTaz azTan
ATA =, ; e azt o oant | =74 . ) )

- anT - | l I anTal anTaZ anTan

alTaz =a;+-a; =0az+ay = aZTa]_
ATA)T = AT(AT)T = ATA

Symmetric Matrices and their Eigenspaces

Theorem

A is a symmetric matrix, with eigenvectors v; and v, corresponding to two distinct eigenvalues. Then v; and v, are
orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.

Proof:
v, eigenvector for 1; with 1; # 4,
v, eigenvector for A,
By the previous fact:
Avy - v, =5 - AV, A=A
Thus: (A, —A)v7 v, =0

Ex.1
Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.

0 01
A=10 1 0], A=-11

1 0 0
If A is symmetric and diagonalizable:

P: matrix of orthonormal eigenvectors
- A=PDP~ ' =pPDPT

10 1\ /1 0 1
,11=—1:A+1=(0 2 0)~<0 1 o)
101/ \o 0 o0

-1

(1)

1
-1 0 1 -1 0 1
/12=1:A—I=<0 0>~<0 0)
1 0 -1 0 0

0
-v,=(1
0

Here:v, - vy =V3 -7, =0

o
o

o

_1/\/E 0 1/\/§ 10 o

P = 0 1 0 |, D=(0 1 0>
1 1

/\/7 0 /\/E 0 0 1

Spectral Theorem
Recall: If P is an orthogonal n X n matrix, then P~ = PT, which implies A = PDPT is diagonalizable and symmetric.
Theorem: Spectral Theorem
An n X n symmetric matrix A has the following properties.
1. All eigenvalues of A are real.



2. The dimension of each eigenspace is full, that it's dimension is equal to it's algebraic multiplicity.
3. The eigenspaces are mutually orthogonal.
4. A can be diagonalized A = PDPT, where D Is diagonal and P is orthogonal.
Proof:
1. AssumethatA; # R
v, eigenvector for A,
v, eigenvector for I
For symmetric matrices:

AV, U, =7, - AD,, A=A
Thus: 17 - v, =0
Z |z112
f—’_ . s e S R
I 171— . . 171'1.71— H
2
Zn |Zn|

Spectral Decomposition of a Matrix
Spectral Decomposition
Suppose A can be orthogonally diagonalized as

oo - ] )L

Then A has the decomposition

A= /11u1u1 +e+ A unun Z/l iU ul
7 i=1
Each term in the sum, ;u;u; , is an n X matrix with rank 1

— ul —s—T — —>
u =y = [wy r uply)
Uy
A1U_1)T U1 u21 /11u11 o AUy T r
A= [u—l)u—n)] = : : :Alulul +-'-+/1nunun
lnu_n)T Uin  Uzn Anlnt = Aplnn
Ex.2
Construct a spectral decomposition for A whose orthogonal diagonalization is given.
1/ _ 1/ 1/ 1/
31 r_|[ V2 V2 ) (4 V2. W2
a=( FPDPT =
1 3 1/ 1/ 0 _ 1/ 1/
V2. W2 V2. V2
1
(2
u =14
vz
Al = 4'
_1
vz
Y
\/—
=2

T T
A= Alulul + Azuzuz

- (Y5 / Y

u1u1 == 1/ 1/\/_

T 1/ VZ (1 1 vz

Uz = / ( / V2 / \/_% 1 / 1 /
V2 V2. 2

1z Yz A\ 2 oy -
=4 1/ 1/ +2 _1/ 1/ _(2 2 ( %( )
V2. V2 V2. W2
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Notes:
Section 7.2: Quadratic Forms

Quadratic Forms

Definition
A quadratic form is a function Q: R™ — R, given by
ai1 A1z 0 Qip
- - - a a o a
QB =xTAz =[x x - x| LT
Ain Qzn  *° Qpn

Matrix A is n X n and symmetric.

In the above, X is a vector of variables

A= ((1) %ﬁ(}‘c’) = (X1 X2) ((1) (1)@;% X2 + x,2

Ex.1
Compute the quadratic form ¥T AX for the matricies below
For A:
L 4 0@1 4x1% 2 2
Q(x)=(*1 x2) (0 X 2} (X1 x2) <3x2 4x,% + 3x,
For B:
. 4xq +
QX)) =(x1 x2) (41} _13@:} (x1 x2) (xicl_ 32% 4%1% + x1x5 + X1X5 — 3%, = 4x,% + 2x1x, — 3x,°

Cross-Term: the coefficients

Ex.1 - Surface Plots
The surfaces for Example 1 are shown below.
Students are not expected to be able to sketch quadratic surfaces, but it is helpful to see what they look like.

Ex.2
Write Q in the form X7 A% for ¥ € R3
Q(X) = 5x1% — 2,2 + 3x32% + 6215 — 12x,x5

5 0 3
A=10 -1 -6
3 -6 3

Change of Variable

If X is a variable vector in R™, then a change of variable can be represented as:
X =Py,ory=P %

With this change of variable, the quadratic form ¥” AX becomes:

Q =xTAX = (Py)TAPy = yT PTAP_ y
symmetric
quadratic form in y
Idea: if A is symmetric, there exists P orthogonal and D diagonal such that A = PDPT
- D = PTAP

Ex.3
Make a change of variable ¥ = Py that transforms Q = ¥7 AX so that it does not have cross terms. The orthogonal
decomposition of A is given.

3 2 s
A= (2 6% PDP™L: Q(®) = 3x,2 + 4x, %, + 61,2

L2 1
P= ﬁ(—1 2)
_(2 0
b= (0 7)
QX) =xTAXx > A= PDPT = yTDy = 2y, + 7y,?
(No cross-terms)

Geometry

Suppose Q(¥) = XT A%, where A € R™ ™ is symmetric. Then the set of X that satisfies
C = xTAx

defines a curve or surface in R™

Previous Example:
Q(f) = 3x12 + 4‘xle + 6x22
3.X12 + 4x1x2 + 6x22 = 8, 2y12 + 7y22 =8

8

>y =2 V2 = 7

Principle Axes Theorem

Theorem

If A is a symmetric matrix then there exists an orthogonal change of variable X = Py that transforms X7 A% to ¥T DX with
no cross-product terms.

Proof:



A=PDP 1pPDPT

(P orthogonal, D diagonal)

Q = XTAX = JTPTAPY = DY = Ayy1® + A92% + - + Anyn®
Ex.5

Compute the quadratic form Q(¥) = XTAx for A = (g é nd find a change of variable that removes the cross-product

term.
Q(.?-C)) = SX]_Z + 4x1x2 + 8x22

_ (5 2y _
A—(Z 8)L_4,9
|A—All = 22— 131+ 36

13 +V169 — 144 _

Mo = > 4o0r9
Mo 1 2 2
A_4I:(2 4) 17—1):(—1)
A =09:
v, = (;)ince they are orthogonal
1 S S
= ﬁ(—zl 3) X =Py

- Q = 4y;% + 9,2

Classifying Quadratic Forms
Q = x,% + x5°
Q= —x12 - xz2
Definition
A quadratic form Q is
1. Positive definite if Q > 0 for all ¥ # 0.

Negative definite if Q < 0 for all % 0.
Positive semidefinite if Q > 0 for all X.
Negative semidefinite if Q < 0 for all X.
Indefinite if Q can be positive or negative.

vk wn

Quadratic Forms and Eigenvalues
Theorem
If A is a symmetric matrix with eigenvalues 1;, then Q = XT AX is
1. Positive definite iff A; > 0 for all i
a. Semidefinite > 0
2. Negative definite iff A; < 0 for all {
a. Semidefinite < 0
3. Indefinite iff 4; > 0,4; < 0 for some i, j

Proof:
If A= PDPT
X = Py
Q = A1y1® + A2 + o+ Anyn®
Ex.6

We can now return to our motivating question: does this inequality hold for all x, y?
x2—6xy+9y2 >0

A= (_13 _93)

Eigenvalues: 0, 10
Q is positive semidefinite

A= (i g:)lAl = —6 = 1,1, = one is positive and one is negative
Q is indefinite

6x1% + 3x1x, + 7x,2 = 07

(6 3/
A_(3/2 7)

= Positive definite
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Notes:
Section 7.3: Constrained Optimization

Ex.1

The surface of a unit sphere in R3 is given by
1 =212 + 232 + x32 =A|

Q is a qunaitity we want to optimize
Q(X) = 9%, + 4x,2 + 3x32

Find the largest and smallest values of Q on the surface of the sphere.
3(x1% + 222 + x32) < Q(®) < 9(x12 + x% + x32)

Where (x;2 + x,%2 + x32) =1

Here:
The minimum is 3, attained at X = +e5
The maximum is 9, attained at X = +e;

A Constrained Optimization Problem
Suppose we wish to find the maximum or minimum values of
Q(F) = iTAR
Subject to
Al 1
That is, we want to find
m = min{Q (X)k 1}
M = max{Q (X)ll 1}
This is an example of a constrained optimization problem. Note that we may also want to know were these extreme
values are obtained.

Constrained Optimization and Eigenvalues
Theorem
If Q(¥) = xT A%, A is a real n X n symmetric matrix, with eigenvalues
}Ll > ,12 e > /1n
and associated normalized eigenvectors
Then, subject to the constraintdf= 1,
e The maximum value of Q(X) = A, attained at X = +u;.
e The minimum value of Q(X) = A, attained at X = +u,,.

Proof:
P = (uj, ..., u,) orthogonal
Define j by X = Py
Q = Ayi® + Yo% + o+ Ay
Here 1 =Ai=Rl#ifince P has orthonormal columns
As in the previous example:
Minimum is A,,, attained for y = t+e,,
Then X = +Pe, = tu,
Maximum is ,, attained for y = +e;
Then X = +Pe; = tu;

Ex.2
Calculate the maximum and minimum values of Q(¥) = ¥T AX, ¥ € R3, subject toxllE 1, and identify points where these
values are obtained.
Q(X) = x1% + 2x,x3
The symmetric matrix A associated to Q is

1 0 0
A=10 0 1
01 0

a-a=a-n7 Ll=a-n@-na-na+na-n

Eigenvalues: 1,1, -1
Eigenvectors:

0 0 0 0 1 -1
A=2, =1 (A—I)=<O ~1 1>~<0 0 0)
-1/ \o 0 0

0 1
(1) 1<0>
su;=(0), uw=—4(1
0 V2 1

A3 = —1: by orthogonality:

10
—)U3=ﬁ 1
-1

e The minimum value of —1, attained at X = +us.
e The maximum value of 1, attained at ¥ = +u;.

o Orx=+u,
o OrX = au; + bu; witha? +b? =1
o M|= a? + b?
= Jtisacircle!
Geom. Multiplicity = 1, line
Geom. Multiplicity = 2, circle

An Orthogonality Constraint
Theorem



Suppose
Q(x¥) = XT A%, Ais a real n X n symmetric matrix, with eigenvalues
Al > ,12 e > An
and associated normalized eigenvectors
Then, subject to the constraintidl: 1, X - u; = 0,
e The maximum value of Q(¥) = A,, attained at X = tu,.
e The minimum value of Q(X) = 4, attained at X = +u,,.
Note that 4, is the second largest eigenvalue of A.
P = (uj, ..., u,) orthogonal
Define y by X = Py
Q = My1® + Ay2% + o+ Apyn®
Here:0 =X -u; = (Py)- (Pe)) =y -e; =Y
Since P has orthogonal columns, preserve dot product
Q= /12}’22 + ot AnﬁVnz
Minimum: A,, fory = e,,(X = +u,)
Maximum: 4, for y = e;(¥ = tuy)

Ex.3
Calculate the maximum and minimum values of Q(¥) = ¥T AX, ¥ € R3, subject toAllE 1 and X - u; = 0, and identify points
where these values are obtained.

1
Q(.?-C)) = x12 + ZXZX3, u_f = (0)
0
From example 2:

Maximum is 1, attained for X = +u,

Ex.4
Calculate the maximum and minimum values of Q(¥) = ¥T AX, ¥ € R3, subject toxllE 5, and identify points where these
values are obtained.

Q(X) = x;% + 2x,x3

Eigenvalues: 1, 1, -1

Max Q(X) = 25
Al 5
2 points of view to see this:
1) DefineybyX = Py, Q = A;y;% + ;5,2 + -+ + 1,,,,2
A2 + 322 + 3% < Q < L (1® + 3% +y3%)
=shi=l= 25
1) A5 T =5=7
X =5x%if 1
Q(¥) = Q(5x) = 25Q(X)
— max Q(X) = 25max Q(¥)
Al 5AK 1

1=

2y
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Notes:
Section 7.4: The Singular Value Decomposition

Ex.1
The linear transform whose standard matrix is

11 —1fv2 _
A:\/_QG 116202 \;)E):@ 11)

Maps the unit circle in R? to an ellipse, as shown below. Identify the unit vector ¥ in which4Ki§ maximized and compute
this length.
Goal: max||
Ak 1
Remark: ma¥jdind maxloccur at the same place for ¥
AR|I= (A%) - (A%) = (AX)TAx = ¥AT AX = ¥T AT A%: it’s quadratic form, so we can just use the eigenvalues of AT A

Ex.1 - Solution
a=(; )

Ta_ (2 203 -1 (/8 0
AA_(—1 1 1%(0 2)
Eigenvalues/Eigenvectors:

% (o)
2 (1)

— max|Jf||= 8 attained at ¥ = +e;
Al 1
= ma¥t$ V8 = 22 attained at ¥ = +e;
Al 1

Singular Values
The matrix AT A is always symmetric, with non-negative eigenvalues 1; > 1, > ---1,, > 0. Let {v5, ..., U, } be the
associated orthonormal eigenvectors. Then
A=A Yo ARy ] AT AT = 7] 5] = )y
If the A has rank 7, then {A7vy, ..., AV} is an orthogonal basis for Col(A):
Forl<j<k<r:

AT; - AT =AU ATy, = Ui ATAVE = A0 - T = 0
Definition: o1 = \/A; = 03 = /A, -+ = 0, = /A, are the singular values of A.

To sum up:
We have'AIFj'H: \/A_J = g;
If i # j: AT; - AT} = 0
AT, ... AT, € Col(A)
XER™ M X =cv; ++cpv,
AX = 1 Av] + -+ + ¢, A,
= Span(A4vy, ..., Av,) = Col(4)
Say, dim Col(4) = r
Span(Avy, ..., Av,) = Span(Avy, ..., Av,)
- {Av], ..., Ay} orthogonal basis of Col(A4)

The SVD
A=U x VT
[ - (SRR

mxn mXmmXnnxn

Theorem: Singular Value Decomposition
A 'm X m matrix with rank  and non-zero singular values g; > ¢, = - > 0. has a decomposition ULV T where

0'1 0 cee 0
[P 9 0 oz = 10
= =l : : ™
0 Omxn 0 O . O-T
0 0

U is an m X n orthogonal matrix, and V is an n X n orthogonal matrix.

A € Rmxn

— ATA € R™" has eigenvlaues 1; > 1, > --- 1, >
{vy, ..., v, } orthonormal basis of eigenvectors
{Av], ..., Av,} orthogonal basis of Col(A4)

D1 1, ,
Define: u; =A|—v_i1?vi = ;iAvi forl<i<r

) Uy, o, Uy Uprny e, U
Define U = ( 1 .r r+1 r+n )
orthonormal basis of Col(A)  orthonormalbasis for Col(4)1t=Null(4AT)
V= ..,m)
U1
T = br

0
We want to prove that:

A=UVT © AV = Uz



AV = (Avy, ..., Avy) = (Muy - v, @ - 0)

—

U1

Uz = (u—l)J ,m) Ur = (vlul o UplUy 6 6)

- AV =UX
e A=Uuzv -t =yzy?

M=U-X-V*

Algorithm to find the SVD of A

Suppose A ism X n has rank r < n.
1. Compute the squared singular values of AT 4, o;
2. Compute the unit singular vector of ATA, ¥}, use them to form V.
3. Compute an orthonormal basis for Col(A) using

2

— 1 .
u, =—Av;,i=12,..r
g

Extend the set {u;} to form an orthonormal basis for R™, use the bassi for form U.

Ex.2
Write down the singular value decomposition for
2 0
0 -3|_
0 0
0 0
Ex.3
Construct the singular value decomposition of
1 -1
A=|-2 2 ]
2 =2

(It has rank 1.)
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Constrained Optimization

Q(X) = x1* + 2x,°

What is max Q (¥) where ¥ € R?? (unconstrained optimization)
max Q(X) = oo

What is max Q (¥) whereilE 1? (constrained optimization)
In general, Q(¥) = XT A%, A is symmetric

max Q(X) = Anax = max{A: A eigenvalue of A}
And Amax = Q(Xmax ) Wheredax # 1 and AXmax = Amax Xmax

Q@) = #TA% = 2T [(1) g] b

= Amax =2
max Q(X) = 2 attained at [2] and [_01]
A1

Worksheet 7.3 Constrained Optimization
Worksheet Exercises
1. Indicate whether the statements are true or false.
a. The largest value of a positive definite quadratic form X7 A% is the largest eigenvalue of A.
i. False
b. The largest value of a positive definite quadratic form X7 A% subject toxllE 1 is the largest value on the diagonal of A.
i. False
2. Calculate the maximum and minimum values of the quadratic form X¥T A% subject to}e 1. Identify where this maximum is obtained.
a. Q(%) = 4x,% + x,% + 4xyx, + 3x32%, ¥ €R3

4 2 0 4—-2 2 0
b. A=(2 1 o[,A-AI=]| 2 1-2 0 |=B-2)A%-51) =0,3,5. Max=5, Min =0.
0 0 3 0 0 3—-1

C. A—51=Null<

2 o)) (1) (:) e
2 —4 of]=(1])]=2=(1])=x,maxQ®) = 0(x,)
0 0 -2 o/ V5\o ' Fh '

4 2 0 1 1 /1
2 1 OD = (—2) = —(—2) = x,, min Q(¥) = Q(x,)
0 0 3 0 V5\ A

3. Calculate the maximum and minimum values of the quadratic form Q subject tof= 1 and X - 4 = 0.

d. A—OI=Null<

2
a. Q(X) = 4x,% + x3% + 4xyx, + 3x32, U = (1)
0

1 2 0 0
b. A—3]=[2 -2 0 :>x3=(0>
0 0 O 1
c. maxQ(x) = Q(x3)
A1
XU=0
d. minQ(xX) = Q(x3)
A1
X-U=0

4. |If possible, give example of the following.
a. Aquadratic form Q: R3 » R, that has the maximum value 12, subject to the constraint thati} 1.
Q) = x1% +12x,% + 4x32
b. A quadratic form Q: R3 = R, that has the maximum value 4 at two distinct locations, subject to the constraint thatqf 1.
i Q@) = 4x,% + 2x,% + 4x3?
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Notes
Mx = UzVT%
Ex.2
Write down the singular value decomposition for
2 0
0 -3|_ T
0 0 =UxV
0 0
15t ¥
2 0
T,._(2 0 0 0 -3\_r4 O
AA_(O -3 0 0 0 _(0 9)
0 0
_)0-1:3, 0-2:2
30
_(0 2
=>X= 0 0
0 0
20 v

h=o o=y =)
o=y =G o)

3rd:. U

U=Q@i u; uz uy)

L 1 0 0
— — -3 —1
=—A = — =
Uuq o1 V1 3 0 < 0
0 0
. . 2 1
— — 0 0
=—A = — =
U, o Uy > 0 0
0 0

Here we can take:

0 0
— 0 — 0
Bl % To
0 1
0 1 0 O
_[—-1 0 0 O
U= 0 0 1 0
0 0 0 1
and: 4 = UzVT
with U, %,V defined above.
Ex.3
Construct the singular value decomposition of
1 -1
A=[—2 2]
2 =2
(It hasrank 1.)
15t 3
1 -1
T,_(1 -2 20_ (9 -9
ata=(2 S 2 2 =0 )
2 =2
-0, =3V2
3V2 0
=>X=| o 0
0 O
20 v

A, =18: ATA— 18I = (:g :3)171’ _ L(_ll)

oo _ 11
A, = 0: by orthogonality: v{ = ( )

1
_)Vzﬁ(—11 1)

3d: U

U= u; u3)

= Ap = 12 _21 1(1}1 24 ! 12
U, =—Av, = — || — — —| — =—| —
! 01 ! 3\/5 2 -2 \/7 -1/ 6 4 3 2

Here we know U, u3 are orthogonal to u;:



X €Nulll -2 2)

xl le - 2x1 2 —2
G0
X3 X3 0 1
2 -2
Problem: (1) and ( 0 ) are not orthogonal

0 1
— Gram-Schmidt

1/3 2/3 _2/3\/3
~u=|=*s s Yy
Y30 5/3\/3

= A=UxVT
with U, %,V defined above.

Applications of the SVD
The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the

first four).
e Estimating the rank and condition number of a matrix
e Constructing bases for the four fundamental spaces
e Computing the pseudoinverse of a matrix
e Linear least squares problems
¢ Non-linear least-squares

Normal Equations: ATA% = ATh
ifA=UzVT
ATA = (uzvDTuzvT =veTuTusyT =v zjg VT: orthogonal diagonalization of AT A

—2
(vl >
—2
Un

The Condition Number of a Matrix

If A is an invertible n X n matrix, the ratio
01

Jn
is the condition number of A.

Note that:
e The condition number of a matrix describes the sensitivity of a solution to AX = b is to errors in A.
¢ We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course.

Ex.4
For A = UXV* determines the rank of 4, and orthonormal bases for Null(4) anc[(ol(A)L)

0 0 10
o1 0 o
U=lo 0 0 -1
1 0 0 O
4 0 0 0 O
2—03000
0 0 +/5 0 0
00 0 00
0 1 0 0O
0 0 1 0 0
vT=[+/02 0 0 0 038
0 0 01 0
—-/0.8 0 0 0 0.2

Rank(4) = 3 (1y, 1y, 73 # 0)
{{;, %3, u3} basis for Col(4))

0
{u} = _01 is an orthogonal bassi fodol(Aj’)= Null(47)
0

Rank Theorem: dim Null(4) = 2

We know: A vy
= {v,, s} is an orthonormal basis for Null(4)
0\ /—/0.8
0 0
1/ 0
0 V0.2



The Four Fundamental Spaces
1. Av, = o,ug

2. V4, .., U, is an orthonormal basis for Row(A)

3. U, .., U, is an orthonormal basis for Col(4)

4. U,y ..., Uy, is an orthonormal basis for Null(4)

5. U1, ..., Uy is an orthonormal basis for Null(4T)

— ( ul e ur u""+1 e um )
orthonormal basis for Col(4)  orthonormal basis for Null(4T)

V: ( vl cee vr ’l]r+1 cee Un )

orthonormal basis for Row(4) orthonormal basis for Null(4)

The Spectral Decomposition of a Matrix
The SVD can also be used to construct the spectral decomposition for any matrix with rank r

r
—s—T
A= Z OgUgUg
s=1

Where ug, u, are the st columns of U and V respectively.
For the case when A = AT, we obtain the same spectral decomposition that we encountered in Section 7.2.
— Check that it works with Examples 2 and 3.
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SVD

A=UzyT

U, V:orthogonal

X: diagonal with non — increasing entries

AmXn
rxmXm
Vinxn

ifA=UzVT
ATA = (WzvDTuzyT =veTuTuzvT =v 2Tz VT:orthogonal diagonalization of ATA

—
2
<v1 )
_2
Un

= columns of V are the ortthonormal set of eigenvectors (in decreasing order of eigenvalues)

Worksheet 7.4, The Singular Value Decomposition
Worksheet Exercises
1. Indicate whether the statements are true or false.
a. Every matrix has a singular value decomposition.
i. True
b. If Ais symmetric, then its factorization A = UDUT is also its SVD.
i. True if entries in D are non-increasing (U = V)
c. The maximum value of4i3lbject tadl: 1 is o;.
i. ARlI=URVT 2|
=xTATAX = Q(X)
max Q(X) = Amax (ATA) = 0121 fordE 1
= maxji# oy, foridlE 1

ii. True
2. Construct the SVD of
4 =2
A=|2 -1
0 O
r,_[20 —10
A= [—10 5 ]
p(A) =20—-2)(55-21)—100 = 1% — 251 = 1(1 — 25)
o 1w
A=0: [2] eigenvector i
Y _[- —-10
A=254TA=251=| "5 ¢
[
1 eigenvector
1r1-2 1
V—\/_g[l 2], 0'1—5, 02—0
50
=>X=[(0 0
0 0
10 2
1 1 V5 V5
_—A = — =
Uq o 121 S _i _i
V5 V5
0 0
2
\5 0
Uy = 1|, uz;=|(0|=>U=[u1 uz us]
NG 1
0
3. Find a unit vector X for which AX has maximum length
2 -1
‘- [2 8 2;
Ty _
ATA = 5 ©

p(D) =B -G - —4=22—131+36= (1 —9)(A—4)
= Amax (ATA) =9
| 5 5

Ta _ar_[-1 271172
Ata-or=[", —4]:\/5[1]
4. By inspection, construct an SVD of the diagonal matrix
(2 0
A= (o 3)

111 1 V45
2 Nzl -FIE - =30
ATA=[3 g

Eigenvalue of 4: + [3]

Eigenvalue of 9: + [(1)]
= 4 SVDs
The SVD of a matrix is not unique: how many different SVDs can you create from the matrix above?

5. Written Explanation Exercise Let A be an m X n matrix of rank r. If r is much smaller than m and n, explain how the following version of
the singular value decomposition



A =ouuy T + -+ opupu, T

gives an efficient way to store A (this is called data compression).
Sizeof AimXn
Size of SVD decomposition: r(m + n)



