Math 1552
Spring 2019
Quiz 5 6pm
February 18, 2019
Time Limit: 15 Minutes

Name (Print): \qquad

Canvas email: \qquad
Teaching Assistant/Section: \qquad

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name: \qquad
This quiz contains 2 pages (including this cover page) and 2 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this quiz.
You are required to show your work on each problem on this quiz. The following rules apply:

- If you use a "fundamental theorem" you must indicate this and explain why the theorem may be applied.
- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.

Problem	Points	Score
1	12	
2	8	
Total:	20	

- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- Please circle or box in your final answer.

1. (12 points) Evaluate the following integral:

$$
\begin{aligned}
& \left.\frac{x+5}{(x+3)^{2}}=\frac{A}{x+3}+\frac{B}{(x+3)^{2}}\right]+3^{\frac{x+5}{x^{2}+6 x+9} d x} \\
& x+5=A x+3 A+B \\
& A=1 B=2+2 \\
& \int \frac{1}{x+3}+\frac{2}{(x+3)^{2}} d x=\frac{\ln |x+3|}{+2}-\frac{2}{x+3}+\frac{C}{+2}+1
\end{aligned}
$$

2. (8 points) Evaluate the limit. Be sure to show your work.

$$
\begin{aligned}
& y=x^{1 / 1-x} \quad \ln y=\frac{\ln (x)}{1-x}+3 \\
& \lim _{x \rightarrow 1^{+}} \frac{\ln (x)}{1-x} \frac{0}{0} \sqrt[\lim _{x \rightarrow 3^{+}}{ }^{1 /(1-x)}]{l^{\prime} \text { Hopital: }} \\
& \lim _{x \rightarrow 1^{+}} \frac{\frac{1}{x}}{-1}=\frac{-1}{+1} \\
& \lim _{x \rightarrow 1^{+}} y=e^{\lim _{x \rightarrow 1^{+}} \ln (y)}=\frac{1}{e}+2
\end{aligned}
$$

Page 2

