Math 2551 Worksheet: Review for Exam 3

- 1. Set up an iterated integral in spherical coordinates for $\iiint_E z^2 \, dV$ where E is the region between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 25$ and inside $z = -\sqrt{\frac{1}{3}(x^2 + y^2)}$.
- 2. Set up an integral that computes the volume of the solid which is bounded above by the cylinder $z = 4 x^2$, on the sides by the cylinder $x^2 + y^2 = 4$, and below by the xy-plane using
 - (a) Cartesian coordinates
 - (b) cylindrical coordinates

Which integral would you rather evaluate and why?

- 3. Find an integral that computes the mass of the wire which lies along the curve $y^2 = x^3$ from (0,0) to (1,-1) and has density function $\rho(x,y) = 2xy^2$.
- 4. Show that the field $\mathbf{F} = 2x\mathbf{i} y^2\mathbf{j} \frac{4}{1+z^2}\mathbf{k}$ is conservative, find a potential function, and use it to compute the integral

$$\int_C 2x \, dx - y^2 \, dy - \frac{4}{1+z^2} \, dz$$

where C is any path from (0, 0, 0) to (3, 3, 1).

- 5. Compute $\int_C (6y+x) dx + (y+2x) dy$ using any method, where C is the circle $(x-2)^2 + (y-3)^2 = 4$.
- 6. Find the flux of the field $\mathbf{F} = y\mathbf{i} x\mathbf{j} + \mathbf{k}$ through the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant in the direction away from the origin.
- 7. Use Stokes' theorem to show that the circulation of the field $\mathbf{F} = \langle 2x, 2y, 2z \rangle$ around the boundary curve C of **any** smooth orientable surface S in \mathbb{R}^3 is 0.
- 8. Find the outward flux of $\mathbf{F} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})/\sqrt{x^2 + y^2 + z^2}$ through the boundary S of the "thick sphere" D given by the points satisfying $1 \le x^2 + y^2 + z^2 \le 4$.