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Chapter 1

Part 1: Integral Calculus
(7 hours)

The purpose of the Bootcamp is to provide an accelerated lecture and workshop
which will help you refresh the parts of mathematics that you once knew but
may have forgotten, but will be very relevant for you throughout your MSA
program. This document includes lecture notes and workshop problems for you
to try yourself. It is very important that you try as many problems as you can,
as the goal of the workshop is to make sure you are able to do similar problems
unassisted during the MSA program. Everyone is expected to be at different
levels coming in to the Bootcamp, so if you have any questions at any time
please don’t hesitate to ask. Each day will be split roughly in 3 parts (45 min
lecture followed by a 15 min workshop, and then repeat).

There are three Parts to the MSA Bootcamp (each taking approx 1.5 days).

∗ Part 1: Integral Calculus, where derivatives of functions, integrals and area
between curves, approximation methods, and Taylor series are discussed.

∗ Part 2: Linear Algebra, where we will discuss vector spaces and associated
terminology: span, linear independence, basis; as well as the basics of solv-
ing linear systems of equations: Gaussian elimination, determinants, and
matrix operations; and finally the theory of eigenvalues and eigenvectors
will be discussed, including how to find them, as well as the associated
concept of diagonalization.

∗ Part 3: Probability and Statistics, where we will discuss basic counting
principles including the binomial theorem, nCr and nPr, basic probability
theory over discrete and continuous variables, as well as limit theorems
and hypothesis testing.
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1.1 Derivatives and Functions

Definition We say that f(x) is a continuous function if, for any x0 and x ∈ X,
we have limx→x0

f(x) = f(x0), where “lim” denotes a limit and f(x) is assumed
to exist for all x ∈ X.

Note: Another definition, the formal definition of continuity, you may have
seen is the following: A function f(x) is continuous at a if for every ε > 0 there
exists a δ > 0 such that |x − a| < δ implies |f(x) − f(a)| < ε. This is written
in mathematical notation with the universal quantifier ∀ (for all) and ∃ (there
exists) as follows.

∀ε > 0 ∃δ > 0 s.t. |x− a| < δ =⇒ |f(x)− f(a)| < ε

Note: The notation limx→x0
means “the limit as x tends to x0” and is a two-

sided limit. Meaning that limx→x+
0
f(x) = limx→x−0

f(x) the right-sided limit

(from the + positive side) and the left-sided limit (from the - side) must agree.
The limit limx→x0

g(x) = L exists if whenever x is very close to x0, the value of
g(x) is very close to L, ∀ε > 0 ∃δ > 0 s.t. |x− x0| < δ =⇒ |f(x)− L| < ε.

Note: In gradeschool, we learned that to be continuous meant that you could
draw the graph without lifting your pencil from the page, but a more sophis-
ticated way of thinking about the definition is that a very small change in the
x-value should make a very small change in the y-value. Think about both of
these intuitive definitions in the following examples.

Example: The function f(x) = 3x2 is continuous for all x. The function
f(x) = bxc (round down to the nearest integer, e.g., b3.4c = 3) has a “jump”
discontinuity at any integer x.

2

Definition If f(x) is continuous, then it is differentiable (has a derivative) if

f ′(x) := lim
h→0

f(x+ h)− f(x)

h

exists and is well-defined for any given x. Think of the derivative as the slope
of the function.

Note: Other notations for f ′(x) are d
dxf(x) and df

dx , when the variable x is being
emphasized.
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Some well-known derivatives are:

[xk]′ = kxk−1,

[ex]′ = ex,

[sin(x)]′ = cos(x),

[cos(x)]′ = − sin(x),

[tan(x)]′ = sec2(x),

[sec(x)]′ = sec(x) tan(x),

[ln(x)]′ =
1

x
,

[arctan(x)]′ =
1

1 + x2
.

Theorem Some well-known properties of derivatives are:

[af(x) + b]′ = af ′(x),

[f(x) + g(x)]′ = f ′(x) + g′(x),

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x) (product rule),

[
f(x)

g(x)

]′
=

g(x)f ′(x)− f(x)g′(x)

g2(x)
(quotient rule)1,

[f(g(x))]′ = f ′(g(x))g′(x) (chain rule)2.

Example: Suppose that f(x) = x2 and g(x) = `n(x). Then

[f(x)g(x)]′ =
d

dx
x2`n(x) = 2x`n(x) + x,

[
f(x)

g(x)

]′
=

d

dx

x2

`n(x)
=

2x`n(x)− x
`n2(x)

,

[f(g(x))]′ = f ′(g(x))g′(x) = 2g(x)g′(x) =
2`n(x)

x
. 2

Example: We can derive the formula for d
dx tan(x) using the quotient rule as

1Lo dee Hi minus Hi dee Lo over Lo Lo.
2www.youtube.com/watch?v=gGAiW5dOnKo
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follows.

d

dx
tan(x) =

d

dx

(
sinx

cosx

)
=

(cosx)(sinx)′ − (sinx)(cosx)′

cos2 x
(quotient rule)

=
(cosx)2 − (sinx)(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
(Pythagorus)

= sec2 x

2

Note: If f ′(x) > 0 on the interval (a, b), then we say that f is increasing over
(a, b). If f ′(x) < 0 on the interval (a, b), then we say that f is decreasing over
(a, b). Functions that are either non-increasing f ′(x) ≤ 0 or non-decreasing
f ′(x) ≥ 0 over an interval are said to be monotone.

Note: The second derivative f ′′(x) ≡ d
dxf
′(x) and is the “slope of the slope.”

If f(x) is “position,” then f ′(x) can be regarded as “velocity,” and as f ′′(x) as
“acceleration.”

Example: The function y = x2 − 4x + 3 = (x − 1)(x − 3) is increasing over
(2,∞), and decreasing over (−∞, 2). 2

Definition The critical points of a function y = f(x) are the x-values for which
f ′(x) = 0.

Note: The minimum or maximum of f(x) can only occur at critical points,
when the slope of f(x) is zero, i.e., only when f ′(x) = 0, say at x = x0.

Definition If f ′′(x) > 0 for x ∈ (a, b) then we say that f is concave up over
(a, b), and if f ′′(x) < 0 for x ∈ (a, b) we say that f is concave down over (a, b).

Note: Suppose x0 is a critical point of f . Then if f is concave down at x0, so
that f ′′(x0) < 0, then there is a maximum at x0; if f ′′(x0) > 0 so f is concave
up, then you get a min; and if f ′′(x0) = 0, you get a point of inflection provided
the sign of f ′′ changes over x0, from negative to positive or from positive to
negative, so the concavity of f has to change over x0 to have an inflection point
(this is sometimes different for different professors/disciplines, in that some
require f ′′(x0) = 0 but not that the concavity of f to change over x0).
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Note: Concave up looks like a smile, and concave down looks like a frown. For
example, f(x) = (1− x)(1 + x) = 1− x2 is concave down on (−∞,∞).

Example: The familiar function y = x2 has only one critical point at x = 0.
Since f ′′(x) = 2 > 0 for all x, the function is concave up everywhere and so any
critical point, hence at x = 0 for instance, there is a minimum. 2

Example: Find the value of x that minimizes f(x) = e2x+e−x. The minimum
can only occur when f ′(x) = 2e2x − e−x = 0. After a little algebra, we find
that this occurs at x0 = −(1/3)`n(2) ≈ −0.231. It’s also easy to show that
f ′′(x) > 0 for all x; and so x0 yields a minimum. 2

1.2 Newton’s Method and Bisection

Bisection: Suppose you can find x1 and x2 such that g(x1) < 0 and g(x2) >
0. (We’ll follow similar logic if the inequalities are both reversed.) By the
Intermediate Value Theorem (which you may remember), there must be a zero
in [x1, x2], that is, x? ∈ [x1, x2] such that g(x?) = 0.

Thus, take x3 = (x1 + x2)/2. If g(x3) < 0, then there must be a zero in
[x3, x2]. Otherwise, if g(x3) > 0, then there must be a zero in [x1, x3]. In either
case, you’ve reduced the length of the search interval by half.

Continue in this same manner until the length of the search interval is as
small as desired.

Exercise: Try out the bisection method for g(x) = x2 − 2, and come up
with an interval approximation for

√
2, starting with x1 = 0 and x2 = 2.

Newton’s Method: Suppose you can find a reasonable first guess for the
zero, say, xi, where we start off at iteration i = 0. If g(x) has a nice, well-
behaved derivative (which doesn’t happen to be too flat near the zero of g(x)),
then iterate your guess as follows:

xi+1 = xi −
g(xi)

g′(xi)
.

Keep going until things appear to converge, for example that the decimal ex-
pansion of the numbers you calculate start stabilizing.

This makes sense since for xi and xi+1 close to each other and the zero x?,
we have

g′(xi) ≈
g(x?)− g(xi)

x? − xi
.

Example: Use Newton’s Method to find the root of g(x) = x2−2, noting that
the iteration step is to set

xi+1 = xi −
x2
i − 2

2xi
=

xi
2

+
1

xi
.
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Let’s start with a bad guess of x1 = 1. Then

x2 =
x1

2
+

1

x1
=

1

2
+ 1 = 1.5

x3 =
x2

2
+

1

x2
≈ 1.5

2
+

1

1.5
= 1.4167

x4 =
x3

2
+

1

x3
≈ 1.4142 Wow! 2

The final method we will discuss right now, the linerization method, is just
to use the derivative at a point x = a, which is just the slope of the tangent
line at (a, f(a)), and a small step ∆x, in order to approximate f(x) for x-values
that are near x ≈ a. So if ∆x = x− a then

f(x) ≈ f(a) + f ′(a)∆x

Definition The linearization of a function y = f(x) at x = a is given by the
formula L(x) = f(a) + f ′(a)(x− a). The linearization y = L(x) is the tangent
line of y = f(x) at x = a, and gives a good approximation for the function
L(x) ≈ f(x) near x ≈ a.

Example: The linearization of f(x) = sin(x) at x = 0 is just

L(x) = sin(0) + cos(0)(x− 0) = x.

So sin(x) ≈ x for values of x that are near x ≈ 0. This is an informal way of

justifying limx→0
sin(x)
x = 0.

2

Example: The linearization of f(x) =
√
x at x = 16 is

L(x) =
√

16 +
1

2
√

16
(x− 16).

So
√
x ≈ 4 + 1

8 (x − 16) for x-values near x = 16. So for example
√

17 ≈
4 + 1

8 (17− 16) = 4 + 1
8 = 4.125.

2
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1.3 Derivative Problems

1. f(x) = sin(tan−1(
√
x3 + 5x− 2))

Solution: f ′(x) = cos(tan−1(
√
x3 + 5x− 2)) · 1

1+(x3+5x−2) ·
3x2+5

2
√
x3+5x−2

2

2. g(x) = 3x1/4e1/x

(x4− 1
3x )5(3x2+2)4

Solution: ln[g(x)] = ln 3 + 1
4 lnx+ 1

x − 5 ln(x4 − 1
3x )− 4 ln(3x2 + 2), so:

g′(x)

g(x)
=

1

4x
− 1

x2
−

5(4x3 + 1
3x2 )

x4 − 1
3x

− 4(6x)

3x2 + 2
.

Then:

g′(x) =
3x1/4e1/x

(x4 − 1
3x )5(3x2 + 2)4

[
1

4x
− 1

x2
−

5(4x3 + 1
3x2 )

x4 − 1
3x

− 24x

3x2 + 2

]
.

2

3. h(x) = (lnx)x

Solution:
ln[h(x)] = x ln(lnx)

So,
h′(x)

h(x)
= ln(lnx) + x · 1

lnx
· 1

x
.

Then:

h′(x) = (lnx)x
[
ln(lnx) +

1

lnx

]
.

2

4. k(x) = log2(log5(log6(8−3x)))

Solution:

k′(x) =
1

ln 2(log5(log6(8−3x)))
· 1

ln 5((log6(8−3x))
· 1

ln 6(8−3x)
·(−3)(ln 8)(8−3x)

2

5. s(t) = t2 csc3(5t) sec5(8t)

Solution:

s′(t) = 2t csc3(5t) sec5(8t)− 15t2 csc3(5t) cot(5t) sec5(8t)

+40t2 csc3(5t) sec5(8t) tan(8t)

2
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1.4 Limit Problems

1. Let f(x) =
√

5− x.

(a) Use the limit definition of the derivative to compute the derivative
of the function.

(b) For what values of x is f differentiable? Write your answer as an
interval.

Solution: :

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1

h

(√
5− x− h−

√
5− x

)
= lim
h→0

1

h

(√
5− x− h−

√
5− x

)(√5− x− h+
√

5− x√
5− x− h+

√
5− x

)
= lim
h→0

1

h

(
(5− x− h)− (5− x)√

5− x− h+
√

5− x

)
= lim
h→0

(
−1√

5− x− h+
√

5− x

)
=

−1

2
√

5− x

Differentiable on (−∞, 5).

2

2. Identify all points (x, y) on the graph of

g(x) =
1

3
x3 − 3

2
x2 + 1

where the tangent line is parallel to the line 8x− 2y = 1.

Solution: : We want points on the curve where g′(x) is equal to the slope
of the line 8x− 2y = 1.

8x− 2y = 1

2y = 8x− 1

y = 4x− 1/4
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So the slope of the line is 4.

4 = g′(x)

4 =
d

dx

(
1

3
x3 − 3

2
x2 + 1

)
4 = x2 − 3x+ 0

0 = x2 − 3x− 4

0 = (x+ 1)(x− 4)

At x = −1 and x = 4 the tangent line has the desired slope. Evaluating g(x)
at these points yields the points (−1,−5/6), and (4,−5/3).

2

3. Sketch a function, y(x), that is defined on the domain x ∈ [−4, 4], is continu-
ous, odd, and not differentiable at exactly two points. Label your axes.

4. Give a formula for a function y(x), that is continuous everywhere but not
differentiable at x = 1. Solution: Many acceptable solutions, including
y(x) = |x− 1|.

2

5. Compute the slope of the tangent line to f(x) at the point where x = 1.

f(x) =
5x+ 1

4x2 + 1

Solution: :

f ′(x) =
d

dx

5x+ 1

4x2 + 1

=
d
dx (5x+ 1)(5x2 + 1)− (5x+ 1) d

dx (4x2 + 1)

(4x2 + 1)2

=
5(5x2 + 1)− (5x+ 1)(8x)

(4x2 + 1)2

f ′(1) =
5 · 6− 6 · 8

52

=
30− 48

25

= −18

25

2
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1.5 Workshop 1: Derivatives, functions, and lim-
its.

1. Calculate the derivative using the definition of the derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

(a) f(x) = 4− x2; f ′(−3), f ‘(0), f ′(1)

(b) k(z) = 1−z
2z ; k′(1), k′(−1), k′(

√
2)

(c) p(θ) =
√

3θ; p′(1), p′(2/3), p′(3)

2. Check your answers from the previous problem by using the shortcut rules
for calculating derivatives.

3. Find the slope of the tangent line at the given value of the independent vari-
able.

(a) f(x) = x+ 9
x , x = −3

(b) k(x) = 1
2+x , x = 2

4. Find the equation of the line y = mx + b which is tangent to the curve
y = 8√

x−2
at the point (6, 4).

5. Find the domain of
√

1− x2. Express your answer in interval notation.

6. Find the domain and range of ln(x − 1). Express your answer in interval
notation.

7. For what x-values is the function f(x) NOT continuous?

f(x) =


|x| if x ≤ −1

2x+ 1 if − 1 < x < 2
x−7
x−3 if x ≥ 2

8. Let f(x) =
√
x− 1, and note that lim

x→5
f(x) = 2. Find the largest δ for which

|x− 5| < δ =⇒ |f(x)− 2| < 1.

9. For what value of a is the function g(x) continuous at x = 2?

g(x) =


x2 − x− 2

x2 − 4
if x 6= 2

3ax+ 1 if x = 2

12



10. Find f ′(x) using the definition of the derivative, where f(x) = 2
x .

11. The derivative of f(x) is f ′(x) = 1
2
√
x

. What is the equation of the line

tangent to the curve y = f(x) at x = 4?

12. Suppose f, g, h are all functions from R to R, and that f(1) = f(2) = 3,
g(1) = 2, g(3) = 4, h(2) = 1, and h(3) = 5. Find the following:

(i) f ◦ h(2) =

(ii) g ◦ f(1) =

13. Find the limits.

(i) limx→1+

|1− x|
x− 1

=

(ii) limx→∞
x3 − x2 − x+ 1

3x3 − 100
=

(iii) limx→3
x2 − 9

x2 − 3x
=

(iv) limx→0
x2 − 4

x2 − 1
=

(v) For each function, identify the coordinates of any local extreme
points and inflection points. Graph the function by finding the
places where the function is increasing/decreasing/concave-up/concave-
down.

(a) y = 6− 2x− x2

(b) y = x(6− 2x)2

(c) y = sinx cosx

(d) y = tanx

(vi) Find the linearization of the function at the given x-value. Use
your answer to approximate f(x0).

(a) y = x3 at x = 1; x0 = 2.1.

(b) y =
√
x at x = 4; x0 = 5.
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1.6 Integrals

Definition The function F (x) having derivative f(x) is called the antideriva-
tive. The antiderivative is denoted F (x) =

∫
f(x) dx; and this is also called the

indefinite integral of f(x).

Note: You can think of anti-derivatives as “undoing” what the derivative does.
So F ′(x) = f(x) means

∫
f(x) dx = F (x) + C. We need to add the arbitrary

constant “+C” because we lose any constant added to a function. For example,
the functions f(x) = x2, g(x) = x2 + 2, h(x) = x2 − 100 all have the same
derivative f ′(x) = g′(x) = h′(x) = 2x. So the antiderivative

∫
2x dx = x2 + C

which is in some sense all of them. Think of this as embodied in the statemtent:
all the vertical translates of a function have the same slopes at every point.

We can thus rewrite our previous differentiation rules as integral rules, where
just the left side and right side have been reversed essentially.

Example: Some well-known indefinite integrals are:∫
xk dx =

xk+1

k + 1
+ C for k 6= −1∫

dx

x
= `n|x|+ C,∫

ex dx = ex + C,∫
cos(x) dx = sin(x) + C,∫

dx

1 + x2
= arctan(x) + C,

where C is an arbitrary constant. 2

Definition We define
∫ b
a
f(t) dt to be the area under the curve y = f(t) over

the interval [a, b], for a continuous function f(t). We can compute this in a
computer by doing Riemann sums by evaluating y = f(t) at lots of points over
the interval [a, b] and then adding up the areas of the resulting rectangles. If
we use a lot of rectangles we will get a very good approximation, and there
are formulas which tell you (in any calculus textbook or just ask google for
instance) how many rectangles you need depending on the size of the interval
and some information about y = f(t) (usually a bound on one of the higher
order derivatives). For the sake of time we won’t get into the computation of
Riemann sums, but it is fairly straightforward. (Just google Riemann sums,
or approximation formulas for Riemann sums if you are interested, or ask me
during the workshop section)
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The way we use integrals in calculus is usually one of two ways: either we
want to know how an integral is changing, or we want to know how to compute
a definite integral. These two ways are embodied in the FTC theorems below.

Fundamental Theorem of Calculus Part I: If f(x) is continuous on the
interval [a, b], then the function F (x) =

∫ x
a
f(t) dt is continuous on [a, b] and

differentiable on (a, b) and furthermore

F ′(x) =
d

dx

∫ x

a

f(t) dt = f(x).

Note: What this amazing theorem says is that the function F (x) =
∫ x
a
f(t) dt,

which is the area under y = f(t) over the interval [a, x], has the property that
if you look at the difference of∫ x

a

f(t) dt−
∫ x+h

a

f(t) dt

for very small values of h, and then divide by h (which is the length of the
interval [x, x+ h] of course), then you get approximately f(x), and in the limit
you get exactly f(x). I’ll draw you a picture to help you see intuitively why this
should be true if f is continuous.

The next FTC theorem tells you how to compute the value of an area under
a curve.

Fundamental Theorem of Calculus Part II: If f(x) is continuous with
antiderivative F (x), then the area under the curve for x ∈ [a, b] is denoted and
given by the definite integral.∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

= F (b)− F (a).

Theorem Some well-known properties of definite integrals are:∫ a

a

f(x) dx = 0, (integrating over a point)

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx, (integrating over a reversed interval)

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx. (subdividing an interval)

15



1.7 Integration by Parts and u-substitution Rules

Theorem Some other properties of general integrals are:

∫
[cf(x) + g(x)] dx = c

∫
f(x) dx+

∫
g(x) dx, (linearity of integrals)

∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx (integration by parts)3,

∫
u dv = uv −

∫
v du (alt formula for IBP)

∫
f(g(x))g′(x) dx =

∫
f(u) du (substitution rule)4.

Example: Using the substitution rule to integrate
∫ e2

3
1

x ln x dx, we set u = lnx

so that du = 1
x dx and we can thus write the integral as∫

1

x lnx
dx =

∫
1

lnx

1

x
dx

=

∫
1

u
du

= ln(u) + C

= ln(lnx) + C.

So to evaluate the definite integral we can do it as follows∫ e2

3

1

x lnx
dx = ln(u)|ln e

2

ln 3

= ln(lnx)|e
2

3

= ln(ln 3)− ln(ln e2)

= ln(ln 3)− ln(2).

2

Note: Notice that the limits of integration change if the independent variable
is x, with x-values x = 3, e2, or if the independent variable is u = lnx, with
u-values that are determined from the x-values and are u = ln 3, ln(e2).

Note: Note also that ln(e2) = 2 ln(e) = 2, from properties of ln(x).

3www.youtube.com/watch?v=OTzLVIc-O5E
4www.youtube.com/watch?v=eswQl-hcvU0
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Example: Using integration by parts with f(x) = x and g′(x) = e2x and the
chain rule, we have∫ 1

0

xe2x dx =
xe2x

2

∣∣∣∣1
0

−
∫ 1

0

e2x

2
dx =

e2

2
− e2x

4

∣∣∣∣1
0

=
e2 + 1

4
. 2

2

Example: Integrating
∫
x sinx dx with u = x and dv = sinx, we have du = dx

and v = − cos(x) dx, so
∫
u dv = uv −

∫
v du becomes∫

x sinx dx = −x cosx−
∫
− cosx dx

= −x cosx+

∫
cosx dx

= −x cosx+ sinx+ C.

2

Note: Integration by parts is the backwards product rule, and the substitution
rule is the backwards chain rule. So if you want to check your answer that∫
f(x) dx = F (x) + C, then in order to check that F ′(x) = f(x): if you did

IPB to find the integral F (x), then you will use PROD to check the derivative
F ′(x), and if you did u-sub to find the integral, then you will use CHAIN to
check the derivative.

1.8 IBP and u-sub Integration Problems

Problem: Find the area bounded by the curves f(x) = x3 + 2x2 and g(x) =
x2 + 2x.

Solution: The curves intersect when x = 0, 1,−2. Breaking the interval
into pieces, we see that f is larger on [−2, 0] and g is larger on [0, 1], so:

A =

∫ 0

−2

[f(x)− g(x)]dx+

∫ 1

0

[g(x)− f(x)]dx.

Plugging in the functions and evaluating the integral yields a total area of 37
12

square units.

2

Problem: Evaluate the integrals:

1.
∫

1
x2 sec

(
1
x

)
tan

(
1
x

)
dx

Solution: Let u = 1
x , then du = − 1

x2 dx and the integral becomes:

−
∫

secu tanudu = − secu+ C = − sec

(
1

x

)
+ C.

17



2

2.
∫
x tan−1(x)dx

Solution: Integration by parts: let u = tan−1(x) and dv = xdx. Then

du = 1
1+x2 dx and v = x2

2 , so∫
x tan−1(x)dx =

x2

2
tan−1(x)−

∫
x2

2
· 1

1 + x2
dx =

x2

2
tan−1(x)−1

2

∫
x2

1 + x2
dx

=
x2

2
tan−1(x)− 1

2

∫ (
1− 1

1 + x2

)
dx =

x2

2
tan−1(x)− 1

2

[
x− tan−1(x)

]
+C

=
x2

2
tan−1(x)− x

2
+

1

2
tan−1(x) + C.

2

Problem: Evaluate the following integrals:

1.
∫

e2x√
4−3e2x

dx

Solution: Let u = 4 − 3e2x, then du = −6e2xdx so − 1
6du = e2xdx. The

integral becomes:

−1

6

∫
du√
u

= −1

3

√
u+ C = −1

3

√
4− 3e2x + C.

2

2.
∫ −2

−3
dx√

4−(x+3)2

Solution: First, rewrite the integral. Pulling a 4 out of the denominator
yields:

1

2

∫ −2

−3

dx√
1−

(
x+3

2

)2 .
Now set u = x+3

2 , then du = 1
2dx. When x = −3, u = 0, and when x = −2,

u = 1
2 , so the integral becomes:∫ 1

2

0

du√
1− u2

= sin−1(u)|
1
2
0 = sin−1

(
1

2

)
− sin−1(0) =

π

6
− 0 =

π

6
.

2
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1.9 Trigonometric Integrals and Trig Substitu-
tion

Theorem From Pythagorus and simple algebraic manipulations we have

sin2(θ) + cos2(θ) = 1

cos2(θ) = 1− sin2(θ) (eq1)

sec2(θ) = 1 + tan2(θ) (eq2)

tan2(θ) = sec2(θ)− 1 (eq3)

We can use these identities to solve certain problems that have trigonometric
functions in them by making an appropriate algebraic substitution followed by
a u-substitution.

Example: In order to evaluate
∫

sin2 x cos5 x dx first change two of the cosine’s
to sin’s, and then make a u-sub as follows.∫

sin2 x cos5 x dx =

∫
sin2 x cos4 x cosx dx

=

∫
sin2 x(cos2 x)2 cosx dx

=

∫
sin2 x(1− sin2 x)2 cosx dx

=

∫
u2(1− u2)2 du

=

∫
(u2 − 2u4 + u6) du

=
1

3
u3 − 2

5
u5 +

1

7
u7 + C

=
1

3
sin3 x− 2

5
sin5 x+

1

7
sin7 x+ C.

2

Example: In order to evaluate
∫

tan3 x sec3 x dx first pull off one each of the
tanx secx to become the du, with u = secx. Then change tan2 x = sec2 x − 1

19



to complete the set up for a u-substitution, as follows.∫
tan3 sec3 x dx =

∫
tan2 x sec2 x secx tanx dx

=

∫
(sec2 x− 1) sec2 x secx tanx dx

=

∫
(u2 − 1)u2 du

=
1

5
u5 − 1

3
u3 + C

=
1

5
sec5 x− 1

3
sec3 x+ C 2

We can also use the identities to do trigonometric substitutions. This inte-
gral technique is probably one of the hardest to master, but the idea is to use
the identities to make an integral that admits no obvious substitution into an
integral that can be computed by one of the previously defined methods (IBP,
u-sub, trig integral, or basic).

Example: In order to evaluate
∫

1√
x2−1

dx we set x = sec θ so that x2 − 1 =

sec2 θ − 1 = tan2 θ using (eq3). We then find dx = sec θ tan θ dθ in order to
appropriately deal with the differentials in the integral. Thus, we have∫

1√
x2 − 1

dx =

∫
1√

sec2 θ − 1
sec θ tan θ dθ

=

∫
1√

tan2 θ
sec θ tan θ dθ

=

∫
sec θ dθ.

Now, we use a clever algebraic manipulation and a u-substitution to solve the
integral

∫
sec θ dθ as follows.∫

sec θ dθ =

∫
sec θ

sec θ + tan θ

sec θ + tan θ
dθ

=

∫
sec2 θ + sec θ tan θ

tan θ + sec θ
dθ

= ln(tan θ + sec θ) + C.

Finally, we use the fact that

sec θ =
hyp

adj
tan θ =

opp

adj

and pythagorus to solve for sec θ and tan θ in terms of x, using the definition
that sec θ = x = x

1 . In particular, tan θ =
√
x2 − 1 and the integral becomes∫

1√
x2 − 1

dx = ln(
√
x2 − 1 + x) + C.
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1.10 Trig Integral and Trig Sub Problems

Problem:
∫

dx
x
√

1+x2

Solution: Trig substitution: let x = tan θ, then dx = sec2 θdθ. So∫
dx

x
√

1 + x2
=

∫
sec2 θ

tan θ
√

1 + tan2 θ
dθ =

∫
sec2 θ

tan θ
√

sec2 θ
dθ =

∫
sec2 θ

tan θ sec θ
dθ =

∫
sec θ

tan θ
dθ

=

∫
1/ cos θ

sin θ/ cos θ
dθ =

∫
1

sin θ
dθ =

∫
csc(θ)dθ = − ln | csc θ + cot θ|+ C

= − ln

∣∣∣∣∣
√

1 + x2

x
+

1

x

∣∣∣∣∣+ C.

2

Problem:
∫ √

25− x2dx
Solution: Trig substitution: let x = 5 sin θ, then dx = 5 cos θdθ. Then∫ √

25− x2dx =

∫
(
√

25− 25 sin2 θ)(5 cos θ)dθ =

∫
(
√

25 cos2 θ)(5 cos θ)dθ

=

∫
(5 cos θ)(5 cos θ)dθ = 25

∫
cos2 θdθ =

25

2

∫
[1+cos(2θ)]dθ =

25

2

[
θ +

1

2
sin(2θ)

]
+C

=
25

2

[
sin−1

(x
5

)
+
x

5
·
√

25− x2

5

]
+ C =

25

2
sin−1

(x
5

)
+
x
√

25− x2

2
+ C.

2

Problem:
∫

tan3(x) sec4(x)dx
Solution:∫

tan3(x) sec4(x)dx =

∫
tan3(x) sec2(x) sec2(x)dx =

∫
tan3(x)[1+tan2(x)] sec2(x)dx

=

∫
[tan3(x)+tan5(x)] sec2(x)dx =

∫
(u3+u5)du [u = tan(x)] =

1

4
tan4(x)+

1

6
tan6(x)+C.

2
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1.11 Partial Fractions

We can use the partial fraction decomposition technique to solve integrals that
do not admit other solutions. For example, since

1

1− x2
=

1

2
(

1

1− x
+

1

1 + x
),

we can integrate∫
1

1− x2
dx =

1

2

∫ (
1

1− x
+

1

1 + x

)
dx =

1

2
ln(1− x) +

1

2
ln(1 + x) + C.

One way to obtain the partial fraction decomposition is to adhere to the follow-
ing method.
Partial Fraction Decomposition:

1. Write the quotient with g(x) factored into linear and irreducible quadratic
factors:

g(x) = (x− r1)n1 · · · (x− rk)nk(x2 + p1x+ q1)m1 · · · (x2 + p`x+ q`)
m` .

2. For each repeated linear factor of g(x), expand

f(x)

g(x)
= · · ·+ A1

(x− r)
+

A2

(x− r)2
+ · · ·+ An

(x− r)n
+ · · ·

3. For each repeated irreducible quadratic factor of g(x), expand

f(x)

g(x)
= · · ·+ A1x+B1

(x2 + px+ q)
+

A2x+B2

(x2 + px+ q)2
+ · · ·+ Amx+Bm

(x2 + px+ q)m
+ · · ·

4. Set the original fraction f(x)/g(x) equal to the sum of all these partial frac-
tions and clear fractions by finding a common denominator of the partial
fractions, arranging the terms in decreasing powers of x.

5. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

The method is elucidated in the following examples.

Example: Using partial fractions to evaluate
∫

x2+4x+1
(x−1)(x+1)(x+3) dx, we see that

the denominator has three linear factors, none of which are repeated, and no
irreducible quadratic factors. The partial fraction decomposition thus has the
form

x2 + 4x+ 1

(x− 1)(x+ 1)(x+ 3)
=

A

x− 1
+

B

x+ 1
+

C

x+ 3
.
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To find the values of the undetermined coefficients A, B, and C, we clear frac-
tions and get

x2 + 4x+ 1 = A(x+ 1)(x+ 3) +B(x− 1)(x+ 3) + C(x− 1)(x+ 1)

= A(x2 + 4x+ 3) +B(x2 + 2x− 3) + C(x2 − 1)

= (A+B + C)x2 + (4A+ 2B)x+ (3A− 3B − C).

The polynomials on both sides (the first polynomial and the last one above) are
equal to each other, so we equate coefficients of like powers of x, obtaining the
following three equalities

Coefficient of x2 : A+B + C = 1

Coefficient of x : 4A+ 2B = 4

Constant: 3A− 3B − C = 1

There are several ways of solving such a system of linear equations for the
unknowns A, B, and C (which we will get to in Part 2 tomorrow). Whatever
method is used, the solution is A = 3/4, B = 1/2, and C = −1/4. Hence we
have∫

x2 + 4x+ 1

(x− 1)(x+ 1)(x+ 3)
dx =

(3/4)

x− 1
+

(1/2)

x+ 1
+

(−1/4)

x+ 3
dx

=
3

4
ln(x− 1) +

1

2
ln(x+ 1)− 1

4
ln(x+ 3) + Constant.

2

Example: Using partial fractions to evaluate
∫ −2x+4

(x2+1)(x−1)2 dx we have that

the denominator has one irreducible quadratic (non-repeated) factor and a re-
peated linear factor. Thus the partial fraction decomposition of the integrand
takes the form

−2x+ 4

(x2 + 1)(x− 1)2
=
Ax+B

x2 + 1
+

C

(x− 1)
+

D

(x− 1)2
.

Clearing the equation of fractions gives

−2x+ 4 = (Ax+B)(x− 1)2 + C(x− 1)(x2 + 1) +D(x2 + 1)

= (A+ C)x3 + (−2A+B − C +D)x2 + (A− 2B + C)x+ (B − C +D).

Equating coefficients of like terms gives

Coefficient of x3 : A+ C = 0

Coefficient of x2 : -2A+B − C +D = 0

Coefficient of x : A− 2B + C = −2

Constant: B − C +D = 4
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Solving to find the values of A,B,C,D we find that A = 2, C = −2, B = 1, D =
1. We substitute these values into our partial fraction decomposition and then
integrate∫

−2x+ 4

(x2 + 1)(x− 1)2
dx =

∫ (
2x+ 1

x2 + 1
− 2

(x− 1)
+

1

(x− 1)2

)
dx

=

∫ (
2x

x2 + 1
+

1

x2 + 1
− 2

x− 1
+

1

x− 1

2)
dx

= ln(x2 + 1) + tan−1 x− 2− 2 ln(x− 1)− 1

x− 1
+ C.

2

1.12 Improper Integrals

Integrals which have infinity in them, either as one of the limits of integra-
tion or for which the integrands themselves become infinite over the interval of
integration, are called improper integrals.

The way to deal with improper integrals is to replace the ∞ symbol with
a limit, in the first case, or to split up the integral and replace the x-value for
which f(x) becomes infinite with a limit, in the second case.

Example: The improper integral∫ ∞
1

1

x2
dx = lim

N→∞

∫ N

1

1

x2
dx = lim

N→∞

−1

x

∣∣∣∣N
1

= lim
N→∞

(
−1

N
+ 1

)
= 1.

So the area under y = 1
x2 over the interval (1,∞) is finite, and equals 1.

2

Example: The improper integral∫ ∞
1

1√
x
dx = lim

N→∞

∫ N

1

1√
x
dx = lim

N→∞
2
√
x
∣∣N
1

= lim
N→∞

(
2
√
N − 2

)
= +∞ dne.

So the area under y = 1√
x

over the interval (1,∞) is infinite, and does not exist.

2

Definition We say that an improper integral which is infinite (or does not exist)
is divergent or that it diverges. We say that an improper integral which is finite
(for which the limit exists) is convergent or that it converges.

Note: The improper integral
∫∞

1
1
xp dx converges if p > 1, and diverges if

0 < p ≤ 1.
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1.13 Partial Frac and Improper Integrals Prob-
lems

Problem:
∫

x+1
x2(x−1)dx

Solution: Using partial fractions:

x+ 1

x2(x− 1)
=
A

x
+
B

x2
+

C

x− 1
.

Multiply both sides by the common denominator, and combine like terms to get

x+ 1 = (A+ C)x2 + (−A+B)x−B.

Solving for A, B, and C yields A = −2, B = −1, and C = 2. Then∫
x+ 1

x2(x− 1)
dx =

∫ (
−2

x
+
−1

x2
+

2

x− 1

)
dx = −2 ln |x|+ 1

x
+ 2 ln |x− 1|+C.

2

Problem:
∫

x+1
x2−4x+8dx

Solution: Since we cannot factor the denominator any further, we use
the method for rational functions. First, we try to obtain the derivative of the
denominator in the numerator, then we break up our problem into two separate
integrals:∫

x+ 1

x2 − 4x+ 8
dx =

1

2

∫
2x+ 2

x2 − 4x+ 8
dx =

1

2

∫
2x− 4 + 4 + 2

x2 − 4x+ 8
dx

=
1

2

∫
2x− 4

x2 − 4x+ 8
dx+3

∫
dx

x2 − 4x+ 8
=

1

2
ln |x2−4x+8|+3

∫
dx

x2 − 4x+ 4− 4 + 8

=
1

2
ln |x2−4x+8|+3

∫
dx

(x− 2)2 + 4
=

1

2
ln |x2−4x+8|+ 3

2
tan−1

(
x− 2

2

)
+C.

2

Problem:
∫
x+2
x+1dx

Solution: Carrying out the long division, we have:∫
x+ 2

x+ 1
dx =

∫ (
1 +

1

x+ 1

)
dx = x+ ln |x+ 1|+ C.

2

Problem: Evaluate the improper integral if it converges, or show that the
integral diverges. ∫ 3

1

1

(x2 − 1)3/2
dx
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Solution: There is a vertical asymptote at x = 1. Rewrite the integral as
follows: ∫ 3

1

1

(x2 − 1)3/2
dx = lim

a→1+

∫ 3

a

1

(x2 − 1)3/2
dx.

We need to find a general antiderivative for the function f(x) = 1
(x2−1)3/2

. Using

trig sub, set x = sec θ, then dx = sec θ tan θdθ and:∫
1

(x2 − 1)3/2
dx =

∫
sec θ tan θdθ

(sec2 θ − 1)3/2
=

∫
sec θ tan θdθ

tan3 θ
=

∫
sec θ

tan2 θ
dθ =

∫
cos θ

sin2 θ
dθ

= − 1

sin θ
+ C = − x√

x2 − 1
+ C.

So the improper integral becomes:∫ 3

1

1

(x2 − 1)3/2
dx = lim

a→1+

[
− x√

x2 − 1

]3

a

= lim
a→1+

[
− 3√

8
+

a√
a2 − 1

]
=∞,

so the integral diverges.

2

Problem: Evaluate the improper integral if it converges, or show that the
integral diverges. ∫ ∞

0

x2e−2xdx

Solution: Rewrite as follows, and use integration by parts (twice) or
tabular integration to obtain the anti-derivative:∫ ∞

0

x2e−2xdx = lim
b→∞

∫ b

0

x2e−2xdx = lim
b→∞

[
−1

2
x2e−2x − 1

2
xe−2x − 1

4
e−2x

]b
0

= lim
b→∞

[
−1

2
b2e−2b − 1

2
be−2b − 1

4
e−2b + 0 + 0 +

1

4

]
=

1

4
,

so the integral converges. (NOTE: you need L’Hopital’s Rule to evaluate the
limits limb→∞ b2e−2b and limb→∞ be−2b.)

2

Problem: For what values of p does the integral
∫∞

4
dx

x(ln x)p converge?

Solution: Rewrite the integral as a limit:∫ ∞
4

dx

x(lnx)p
= lim
b→∞

∫ b

4

dx

x(lnx)p
.

Let u = lnx, then du = 1
xdx. When x = b, u = ln b, and when x = 4, u = ln 4,

so the integral becomes:

lim
b→∞

∫ ln b

ln 4

du

up
.
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If p 6= 1, then: ∫
du

up
=

u−p+1

−p+ 1
+ C,

and if p = 1, then: ∫
du

u
= ln |u|+ C.

So: ∫ ∞
4

dx

x(lnx)p
= lim
b→∞

(ln b)1−p

1− p
− (ln 4)1−p

1− p
, p 6= 1

and ∫ ∞
4

dx

x(lnx)p
= ln | ln b| − ln | ln 4|, p = 1.

When p = 1, this limit is ∞ and the integral diverges.
When p > 1, 1− p < 0, so as b → ∞, ln b → ∞ and thus (ln b)1−p → 0, so the

limit is − (ln 4)1−p

1−p = 1
(ln 4)p−1(p−1) , a finite value, so the integral converges.

When p < 1, 1 − p > 0, so as b → ∞, ln b → ∞ and ln b1−p → ∞, so the limit
is ∞ and the integral diverges.
Thus, the integral only converges when p > 1.

2

Problem: Find the area bounded by the curve y = 1
x2+9 , the x-axis, and

x ≥ 0.
Solution: We need to evaluate:∫ ∞

0

dx

x2 + 9
= lim
b→∞

1

9

∫ b

0

dx(
x
3

)2
+ 1

=
1

9
lim
b→∞

3 tan−1
(x

3

)
|b0

=
1

3
lim
b→∞

[
tan−1

(
b

3

)
− tan−1 0

]
=

1

3

[π
2
− 0
]

=
π

6
units2.

2
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1.14 Workshop 2: Integration

1. Solve the separable differential equation.

dy

dx
= xex/3(4y2 + 1).

2. (a) Find a closed formula for the n-th term of the sequence in terms of n.
Then, (b) find the limit of the sequence using L’Hopital’s rule.

3

5
,

-6

11
,

12

17
,

-24

23
,

48

29
, . . .

3. Integrate.

(a)

∫
5 sin5(x/3) cos2(x/3) dx

(b)

∫ √
x2 − 9

x
dx

(c)

∫
x+ 2

x3 + x
dx

4. Evaluate the limit using L’Hopital’s rule.

lim
x→∞

(x+ ex)1/x

5. Find the approximate area bounded by the curve y = sin(x) over the interval
[0, π/2] using the trapezoid rule with n = 3 trapezoids. For up to 4 points,
check your answer with FTC.

6. Evaluate the improper integral.∫ ∞
1

1

x(2 + lnx)2
dx

7. Suppose a population of bacterium, left unchecked, follows the rule that the
current rate of growth of the population is proportional to the current popu-
lation size. If the bacterium colony starts with 8 members, and after 2 days
there are 400 bacterium, then what is the function which gives the number of
bacterium in the colony after t days?
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Riemann Sums and Taylor Series

In this section we will use sigma notation. A sigma is Σ and it means “to sum”.
So if you see

N∑
i=1

xi

that just means
x1 + x2 + x3 + · · ·+ xN .

Sometimes shorthand notation is used so you may see instead
∑
i xi or even just∑

xi where the index is just assumed to be explained in context.
We are going to be using sigma notation to describe two important concepts,

and the last two topics in Part 1, which are Riemann Sums and Taylor Series.

1.15 Riemann Sums

Riemann Sums are used to approximate the area under a curve if you don’t have
the ability to compute exactly. For instance, the simplest is to approximate the
area under a continuous function f(x) from a to b by adding up the areas
of n adjacent rectangles of width ∆x = (b − a)/n and height f(xk), where
xk = a+ k∆x is the right-hand endpoint of the kth rectangle. Thus,∫ b

a

f(x) dx ≈
n∑
k=1

f(xk)∆x =
b− a
n

n∑
i=k

f

(
a+

k(b− a)

n

)
.

In fact, as n → ∞, this approximation becomes an equality, and its actually

equivalent to define
∫ b
a
f(x) dx as the limit of Riemann sums.

Example: To approximate the integral
∫ 1

0
sin(πx/2) dx with n rectangles of

equal size we have ∆x = 1/n and xi = i/n, which simplifies the notation a bit.
Then ∫ b

a

f(x) dx =

∫ 1

0

f(x) dx

≈
n∑
i=1

f(xi)∆x

=
1

n

n∑
i=1

sin
( πi

2n

)
.

For n = 100, this calculates out to a value of 0.6416, which is pretty close to
the true answer of 2/π ≈ 0.6366. 2

In the last example, we used the right-endpoint of each rectangle to evaluate.
But we could have used the left-endpoint, or the midpoint of each interval, or
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we could have used whichever endpoint gave us the larger value, or the smaller
value.

Definition A Riemann sum is a sum of the form
n∑
k=1

f(ck)∆xk

where {xk| 1 ≤ i ≤ n} form a partition of the interval [a, b] over which y = f(x)
is continuous, ck ∈ [xk, xk+1] and ∆xk = xk+1 − xk, for 1 ≤ k < n.

The most common Riemann sums are the upper, lower, left-endpoint, and

right-endpoint Riemann sums. For each of these, the points xk = a+ k(b−a)
n , or

xk = a+ k∆x.
This just means that the interval [a, b] is subdivided equally into n equal

pieces, and the endpoints of these intervals of length (b− a)/n are called xk.

Note: Actually there’s no rule that the interval [a, b] has to be equally subdi-
vided, all that is required to get convergence to the definite integral is that the
maximum width of any sub-interval (the ”mesh size”) has to go to zero.

Remark Sometimes it is useful to find a closed formula for a Riemann sum.
The idea is to find a formula Rn which calculates the approximate area under
f(x) over [a, b] using n rectangles, but doesn’t require you to add n separately
computed values.

Example: For example, we can use the following two formulas to find a closed

formula for the approximate area
∫ 5

2
x2 dx using n rectangles.

n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

The Riemann sum we want to find a closed formula for is

Rn =

n∑
k=1

(
2 +

k(5− 2)

n

)2
(5− 2)

n

=
3

n

n∑
k=1

(2 +
3k

n
)2

=
3

n

n∑
k=1

(4 +
12k

n
+

9k2

n2
)

=
3

n
· 4

n∑
k=1

1 +
3

n
· 12

n

n∑
k=1

k +
3

n
· 9

n2

n∑
k=1

k2

=
12

n
· n+

36

n2
· n(n+ 1)

2
+

27

n3
· n(n+ 1)(2n+ 1)

6
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Which can be written after simplifying as

Rn = 12 +
18(n+ 1)

n
+

9(n+ 1)(2n+ 1)

2n2
.

Note that Rn → 12 + 18 + 9 = 39 as n → ∞, and indeed
∫ 5

2
x2 dx = 1

3x
3|52 =

1
3 (53 − 23) = 125−8

3 = 117
3 = 39.

2

1.16 Taylor Series

Taylor series are probably the single most powerful way of looking at a function.
For example, consider the Taylor series about x = 0 for the following three
functions.

sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
,

cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!
,

ex =

∞∑
k=0

xk

k!
.

Note: We use the notation k! to mean k! = k(k− 1)(k− 2) · · · 3 · 2 · 1, called “k
factorial”. It is a very common notation in counting problems in mathematics,
and in probability and statistics.

It turns out that each of the three series above converge for all values of x,
but the convergence is very fast near x = 0. For example, taking only 3 terms
on the right hand side (RHS), we have

sinx ≈ x− x3

3!
+
x5

5!
.

Just ponder this for a minute.

I’ll wait. No really go ahead.

What this means is that to a very high degree of accuracy, sinx is just a

degree 5 polynomial! P5(x) = x− x3

3! + x5

5! . To be fair, the convergence is only
fast enough for the first three terms to be sufficient if x is near zero, but if you
use n = 100 terms, then for all but very large x-values will sinx be very close

to P100(x) =
∑100
k=0

(−1)kx2k+1

(2k+1)!
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Definition The Taylor series expansion of f(x) about a point x = a is given
by the formula

f(x) =

∞∑
k=0

f (k)(a)(x− a)k

k!
.

In the above, the notation f (k)(a) means the kth derivative of the function f(x),
evaluated at the point x = a.

Note: The MacLaurin series is simply the Taylor series expanded around x = 0.
The Taylor polynomial Pn just means truncating the Taylor series at some n-
value making the series finite, aka a ∗polynomial∗.

Remark The point x = a is called the center of expansion. The center
is important because nearby the center you have very fast convergence of the
Taylor series to the function it represents. Further away from the center you
get slower convergence, or possibly if you get too far away from the center, the
series can diverge.

Remark The first degree Taylor polynomial P1(x) is just L(x) the lineariza-
tion of the function at x = a. The second degree Taylor polynomial is essentially
the best quadratic approximation of the function at the point x = a. For higher
degree Taylor polynomials you get even better approximations, and in the limit,
as n tends to infinity, you get the function itself.

Remark I just can’t stress how incredibly useful this is. You get to know
basically everything there is to know about a function and do all sorts of clever
tricks, and all you have to know is all the derivatives of the function at one
single point x = a. It staggers the mind.

Example: Let’s approximate
∫ 1

0
e−x

2

dx using Taylor polynomials.

Since e−x
2

=
∑∞
k=0

(−1)kx2k

k! , which we can obtain from the MacLaurin series
for ex after replacing −x2 7→ x, we can then integrate the series instead of the
function∫ 1

0

e−x
2

dx =

∫ 1

0

∞∑
k=0

(−1)kx2k

k!
=

∞∑
k=0

(−1)k

k!

x2k+1

2k + 1
|10 =

∞∑
k=0

(−1)k

k!(2k + 1)
.

We can then approximate the value of
∫ 1

0
e−x

2

dx by taking several of the
terms of the series. For example, with 5 terms we get

4∑
k=0

(−1)k

k!(2k + 1)
=

1

0! · 1
− 1

1! · 3
+

1

2! · 5
− 1

3! · 7

= 1− 1

3
+

1

10
− 1

42
= 0.74285714 . . .

For example, using left-endpoint approximation Riemann sum with n = 200
rectangles you get 0.7484029014, which is off by only 0.0055457585.
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Remark In fact, for alternating sums which satisfy that the terms are de-
creasing and converging to zero, the next term is an upper bound on the current
error.

|L−
N∑
k=0

(−1)kak| < aN+1

1.17 Riemann Sum and Taylor Series Problems

Problem: (Applying the Definite Integral) A marketing company is trying a
new campaign. The campaign lasts for three weeks, and during this time, the
company finds that it gains customers as a function of time according to the
formula:

C(t) = 5t− t2,

where t is time in weeks and the number of customers is given in thousands.
Using the general form of the definite integral,∫ b

a

f(x)dx = lim
n→∞

b− a
n

n∑
i=1

f(x∗i ),

calculate the average number of customers gained during the three-week cam-
paign.

Solution: First, note that since average value is defined asAV = 1
b−a

∫ b
a
f(x)dx,

we can use the Riemann sum formula to obtain (the term b− a will cancel):

AV = lim
n→∞

1

n

n∑
i=1

C(x∗i ).

In this problem, a = 0 and b = 3. Breaking the interval into n equal pieces
would give ∆x = 3

n . To find each right-hand endpoint, we can set:

x∗i = a+ i∆x = 0 +
3i

n
=

3i

n
,

and thus

C(x∗i ) = 5

(
3i

n

)
−
(

3i

n

)2

=
15

n
i− 9

n2
i2.

Now plugging into the summation:

n∑
i=1

C(x∗i ) =

n∑
i=1

(
15

n
i− 9

n2
i2
)

=
15

n

n∑
i=1

i− 9

n2

n∑
i=1

i2 =
15

n
·n(n+ 1)

2
− 9

n2
·n(n+ 1)(2n+ 1)

6

=
15(n+ 1)

2
− 9(n+ 1)(2n+ 1)

6n
.
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Using this expression, we can now find average value:

AV = lim
n→∞

1

n

n∑
i=1

C(x∗i ) = lim
n→∞

1

n

(
15(n+ 1)

2
− 9(n+ 1)(2n+ 1)

6n

)

= lim
n→∞

(
15(n+ 1)

2n
− 9(n+ 1)(2n+ 1)

6n2

)
=

15

2
− 18

6
= 4.5,

so the company gained an average of 4,500 customers weekly during the cam-
paign.

2

Problem: You are driving when all of a sudden, you see traffic stopped in front
of you. You slam the brakes to come to a stop. While your brakes are applied,
the velocity of the car is measured, and you obtain the following measurements:

Time since applying breaks (sec) 0 1 2 3 4 5
Velocity of car (in ft/sec) 88 60 40 25 10 0

Using the points given, determine upper and lower bounds for the total distance
traveled before the car came to a stop.
Problem: Consider the function f(x) = x+ 2x2 on the interval [0, 2]. Using a
midpoint estimate with n = 4 subintervals, estimate the average value of f .
Problem: Use a Taylor polynomial to estimate the value of

√
e with an error

of at most 0.01. HINT: Choose a = 0 and use the fact that e < 3.
Solution: Recall that the remainder term can be found with the formula:

|Rn(x)| ≤ max |f (n+1)(c)| |x− a|
n+1

(n+ 1)!
.

Letting f(x) = ex, we have a = 0, x = 1
2 , and f (n+1)(c) = ec < 3 for any value

of n. So:

|Rn(0.5)| ≤ 3 · (0.5)n+1

(n+ 1)!
.

Plug in values of n until this number is smaller than 0.01. Note that n = 3 is
the first value that works, so we will approximate the value with a 3rd degree

Taylor Polynomial. For f(x) = ex, P3(x) = 1 + x+ x2

2 + x3

3! , so:

√
e ≈ f(0.5) = 1 + 0.5 +

(0.5)2

2
+

(0.5)3

6
= 1.6458.

(the calculator value is approximately 1.64872)

2

Problem: For what values of x can we replace cosx with 1− x2

2! + x4

4! within
an error range of no more that 0.001?
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Solution: We note that:

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ ...

is an alternating series. For an alternating series, recall that the error is no
greater than the absolute value of the next term in the sequence.

Thus, we need to solve:
∣∣∣x6

6!

∣∣∣ < 0.001 for x, or |x6| < 6!
1000 = 0.72, so |x| < 0.9467.

Choosing x so that x ∈ (−0.9467, 0.9467) will then give us an approximation
within this error range.

2

Problem: Find f (7)(0) for the function f(x) = x sin(x2).
Solution: First, find a MacLaurin Series for f(x) = x sin(x2):

sinx =
∑

(−1)k
x2k+1

(2k + 1)!
→ sin(x2) =

∑
(−1)k

x4k+2

(2k + 1)!
,

so:

x sin(x2) =
∑

(−1)k
x4k+3

(2k + 1)!
.

Note that in a MacLaurin Series, the coefficient of xk is exactly f(k)(0)
k! , so we

need to find the coefficient of x7. Note that we plug in k = 1 to obtain 4k+3 = 7,

so the entire term when k = 1 is: (−1)1 x7

3! = − 1
6x

7. Then, the coefficient of x7

is − 1
6 , so:

f (7)(0) = 7! ·
(
−1

6

)
= −840.

2
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Chapter 2

Part 2: Linear Algebra
(6.5 hours)

Linear Algebra in simplest terms is the study of how to solve systems of linear
equations. A linear equation often takes the form y = mx + b where m is the
slope, b is the y-intercept, and the variables x, y are the independent and depen-
dent variables. But in a lot of cases when you are presented with several linear
equations that you are supposed to solve simultaneously they are presented in
a block format like this.

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...
...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

The xi’s are the variables, the numbers aij are called coefficients, and the bi’s
are the constants or sometimes they are called the constraints.

You can represent the same information as a matrix equation

Ax = b,

where

A = [aij ] =


a1,1 a1,2 · · · a1,n

a2,1 a2,2, · · · a2,n

...
...

...

am,1 am,2 · · · am,n

 , b =


b1

b2
...

bm

 .
Matrix multiplication of AB between an m×r matrix A, and an r×n matrix

B, is computed as follows: to obtain the entry aij in the ith row and the jth
column of the product AB, you take the ith row of A and the jth column of B
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and perform a dot product like operation (it is exactly the dot product if you
transpose the row into a column)

[
ai,1 ai,2 · · · ai,r

]

b1,j

b2,j
...

br,j

 =
∑

ai,kbk,j

In the sum above, the index of summation is assumed to be the repeated index,
but if you like it is

[AB]i,j =

r∑
k=1

ai,kbk,j

Note: Matrix multiplication is only defined for matrices of appropriately com-
parable sizes. In particular, the product AB is defined if the number of columns
of A matches the number of rows of B. Hence, AB and BA are both defined
only if they are square n× n matrices.

Remark Matrix multiplication is associative and distributive, but not com-
mutative. So AB 6= BA is possible even when both are defined.

Definition The augmented matrix of a linear system Ax = b is the matrix
[A|b]. Clearly, representing the information as the augmented matrix [A|b], the
matrix equation Ax = b, or as a list of linear equalities in block format, are all
equivalent ways of storing the data of the linear system of equations.

2.1 Solving Systems of Linear Equations

As mentioned in Part 1, there are many ways to solve systems of linear equations.
When there are many equations and many variables, however, it is simplest to
use row operations on matrices to simplify the equations before solving.

Definition There are three elementary row operations that you can do on a
matrix A.

1. Exchange two rows of A,

2. Multiply a row of A by a non-zero constant,

3. Add a multiple of one row of A to another row of A.

It is only slightly non-obvious that all three row operations do not change the
solutions of the system of equations represented by the augmented matrix [A|b].

Performing Gaussian-Elimination on a matrix means doing an algorithm by
which you systematically reduce a matrix using row operations, until you get
a simpler matrix for which it is easy to read off the solutions of the system of
linear equations that the matrix represents.
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Example: The matrices

[A|b] =

 1 0 0 3

0 1 0 2

0 0 1 -1

 , and [B|b̂] =

 7 2 1 24

3 1 0 11

6 2 1 -21


are actually row-equivalent (I made the second from the first in three row op-
erations). So they have the exact same solutions. From looking at the system
Ax = b we see that the solutions are x1 = 3, x2 = 2, x3 = -1.

2

Note: Clearly for the matrix on the left [A|b] it is much easier to determine the
solutions. We state the properties that are desirable to be able to read of the
solutions below.

Definition A matrix is in row reduced echelon form if the following properties
are satisfied.

1. All rows of zeros (if any) are at the bottom.

2. The leading entries of each row are 1.

3. The leading ones form a staircase, so that each 1 is above and to the left of
the 1’s below it.

4. Any entry above a leading 1 is zero.

A matrix which satisfies all but the last property is said to be in row echelon
form, but it is not reduced.

Example: We will solve the system by row reducing the augmented matrix
[A|b]

x1 + 2x2 +3x3 − 2x4 = 1

−3x1 − 6x2 −9x3 + 7x4 = 0

−2x1 − 4x2 −6x3 + 5x4 = 1

Doing the row operations
3R1 +R2 7→ R2

2R2 +R3 7→ R3

−R2 +R3 7→ R3

2R2 +R1 7→ R1

yields the rref of [A|b] which is

[A|b] ∼

 1 2 3 0 7

0 0 0 1 3

0 0 0 0 0
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Thus the solutions of [A|b] are the same as the solutions of

x1 + 2x2 +3x3 = 1

x4 = 3

0 = 0

By convention we write the equations in terms of the non-pivot variables, and
give any non-pivot variables new parameter names. So the solutions are given
by

x1 = −2r − 3r + 1

x2 = r (free)

x3 = s (free)

x4 = 3

2

2.2 Determinants

Definition To compute the determinant of an n×n matrix you perform cofactor
expansion across a row or column. There are several equivalent notations which
specify how to do this.

det(A) = a11 detA11 − a12 detA12 + · · ·+ (−1)1+na1nA1n =

n∑
j=1

(−1)1+j detA1j

det(A) = a1jC1j + a2jC2j + . . . anjCnj =

n∑
i=1

aijCij

det(A) = ai1Ci1 + ai2Ci2 + . . . ainCin =

n∑
j=1

aijCij

In the above, Aij means the matrix obtained from A by deleting row i and
column j, and is called the ijth-minor of A. The notation Cij is called the
cofactors of A and is defined by Cij = (−1)i+j detAij .

Example: Compute the determinant of A using a few columns or rows.

A =

1 5 0

2 4 -1

0 -2 0

 2
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2.3 Workshop 3: Matrix algebra and linear sys-
tem solving

1. In the questions below, assume that A is a (general) m × n matrix, with m
rows and n columns, and b is a (general) vector in Rm. Circle true if the
statement is always true (for any possible choice of A and b), otherwise circle
false. (4 pts. each)

(a) If m > n, then Ax = b has a unique solution. true false

(b) If m = n, then Ax = b has a unique solution. true false

(c) If Ax = b has a unique solution, true false
then there are n pivots in A.

(d) If there are n pivots in A, true false
then Ax = b has a unique solution.

(e) If Ax = 0 has more than one solution, true false
then it has infinitely many solutions.

(f) The matrix

[
1 1 1

0 1 1

]
is in rref. true false

(g) The matrix

0 1 −1

0 0 0

0 0 0

 is in rref. true false

2. Find the rref (reduced row echelon form) of the matrix 1 0 1 2

-2 5 -12 11

1 -2 5 -4


3. Determine whether or not the vector equation below has a solution. If it

has a unique solution, find it. If it has infinitely many solutions express the
solutions parametrically in terms of the free variable(s).

x

1

1

1

+ y

0

3

2

+ z

 2

11

8

 =

-1

8

5


4. Suppose v1, v2 are two vectors in R2, and b is another vector in R2. Give an

example of vectors v1, v2, and b such that the vector equation xv1 + yv2 = b
has

40



(a) A unique solution.

(b) No solution.

(c) Infinitely many solutions.

5. Find the determinant of A.

A =

1 0 2

0 3 3

1 1 3


6. Solve.

2x− 3y = 7

x+ 5y = 3

7. Solve.
x− 2y + z = 1

2y − z = 3

x − z = 2

8. True or false. Assume the matrix A has 3 rows and 4 columns, so it’s size is
3× 4, meaning the corresponding system has 3 equations and 4 unknowns.

(a) true/false If A has three pivot positions, then the equation
Ax = 0 has the trivial solution.

(b) true/false If A has three pivot positions, then the equation
Ax = 0 has a non-trivial solution.

(c) true/false If x is a nontrivial solution to Ax = 0, then every
entry in x is nonzero.

(d) true/false If A has three pivot positions, then the equation
Ax = b is always consistent for all b ∈ R3.

(e) true/false The homogeneous system Ax = 0 has infinitely
many solutions.

9. In R3 (so using three coordinate axes) sketch the following, making a new
sketch for each part (i)-(v):

(i) the plane z = 0,

(ii) the plane z = 2,

(iii) the plane y = −3,

(iv) the plane x+ y + z = 0,

(v) the intersection of the planes z = 2 and x = 0.

In each case, you are practicing drawing an accurate, representative graph of
the plane of points which satisfy the given equation in the variables x, y, and
z.
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10. (1) Choose two vectors v1, v2 in R2 and another vector b also in R2. Find
scalars x, y in R such that xv1 + yv2 = b (if this is not possible, pick other
v1, v2, b vectors). Illustrate the vector equation you just solved by graphing
the vectors v1, v2, b in the x − y-plane, and be sure to illustrate how b is
obtained by adding a scalar of one vector to the other. (2) Repeat part 1
with vectors v1, v2, b in R3 that give a consistent system. (3) Why is part 2
more difficult than part 1? Explain clearly using complete sentences.
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2.4 Matrix Algebra

Once you’ve defined matrix multiplication and matrix addition (which is just
adding componentwise), it makes sense to look for additive and multiplicative
identity objects in the set of square matrices. In the real numbers, the additive
identity is 0, and the multiplicative identity is 1. That’s because

1. 0 + a = a for any a ∈ R, and

2. 1 · a = a for any a ∈ R.

The corresponding matrices that do the same “jobs” as 0 and 1 for the real
numbers are the zero matrix (which is just denoted 0) and the identity matrix
which is denoted I.

The identity matrix takes the form

I2 =

[
1 0

0 1

]

for the 2× 2 identity matrix. And

I3 =

1 0 0

0 1 0

0 0 1


for the 3×3 identity matrix. In general, for any n, the matrix In with 1’s along
the diagonal and 0’s elsewhere is the n× n identity matrix.

Every matrix A has an additive inverse −A, which is just the matrix which
gets you to the additive identity 0. So A+ (−A) = A−A = 0.

However, not every matrix has a multiplicative inverse. For a given matrix
A, sometimes it is possible to find a pair of matrices AB = I, but sometimes
AB = I is impossible.

Definition Given an n× n matrix A, we say that A is invertible if AB = I for
some matrix B. In that case we call B the inverse of A and write B = A−1.

Note: We have the following properties if A is an n× n invertible matrix with
inverse matrix A−1.

1. (A−1)−1 = A.

2. (AB)−1 = B−1A−1.

3. I−1 = I.

4. A−1A = AA−1 = I

5. If Ax = b, then x = A−1b.
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Note: The last item on the previous list gives you an easy way to compute the
solution to a system of linear equations if A is invertible.

Theorem The inverse of a 2×2 matrix A =

[
a b

c d

]
is given by the formula

A−1 =
1

ad− bc

d -b

-c

a

 .
Theorem If A is invertible, then the rref of A is the identity matrix I.
The way to find inverses is to row reduce the matrix A to I but keeping track

of the row operations you are using to reduce the matrix A. If you perform the
exact same operations on I then you will get A−1.

Remark To find A−1.

Step 1: Form the augmented matrix [A|I].

Step 2: Perform Gaussian elimination to row reduce the augmented matrix to ob-
tain [I|A−1].

Step 3: Read off the inverse matrix as the second part of the augmented matrix.

Example: The matrix

A =

1 3 2

0 1 0

2 6 5


has inverse

A−1 =

 5 -3 -2

0 1 0

-2 0 1

 .
2

2.5 Vector Spaces

You’ve actually been working with vector spaces since grade school, although
they are rarely called that. The xy-plane is a vector space, in the sense that
every point in the xy-plane represents a vector (and visa versa). Also, the real
line is the simplest example of a vector space (somewhat trivially). Polynomials
of degree at most d form a vector space because of the following two properties:
(1) if you take two polynomials of degree at most d and add them together, you
get a polynomial of degree at most d, and (2) if you multiply a polynomial of
degree at most d by a scalar, you get another polynomial of degree at most d.
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Definition A vector space is a set of vectors V which satisfy the properties of
being closed under vector addition and closed under scalar multiplication.

1. If x,y ∈ V then x + y ∈ V .

2. If x ∈ V and c ∈ R, then cx ∈ V .

Definition A subspace W of a vector space V is a subset W ⊆ V of V that is
also itself a vector space.

Example: Any line passing through the origin is a vector subspace of R2.
However, the first quadrant of R2 is not a subspace, it is not closed under scalar
multiplication. The union of the first and third quadrant is not a subspace
either, because although it is closed under scalar multiplication, it is not closed
under vector addition.

2

Example: Polynomials of degree at most d are a vector space for any d ≥ 0.
Polynomials of degree exactly d are not vector spaces for any d except d = 0.
(why not?)

2

Example: The solutions x to a homogeneous system of linear equations Ax =
0 form a vector subspace, sinceA(x+y) = Ax+Ay = 0+0 = 0 (provided x and y
are both solutions to the homogeneous system), and A(cx) = c(Ax) = c(0) = 0
(if x is a solution to the homogeneous system). (hence the solutions are closed
under vector addition and scalar multiplication).

2

Definition The vector subspace which is the set of solutions of a homogeneous
system of linear equations defined by Ax = 0 is denoted

nul(A) = {x | Ax = 0}

and is called the null space of A.

Definition The span of the columns of a matrix A is a subspace and is called
the column space of A, and denoted col(A).

In vector spaces, two of the important concepts are span and linear inde-
pendence. In words, the span of a set of vectors are all the other vectors you
can get from adding up scalar multiples of the vectors. So, the span of a single
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vector is the line containing that vector (which necessarily passes through the
origin). A set of vectors is linear independent if it is a minimal spanning set
of vectors, meaning that if you deleted any vectors from the spanning set you
would make the span smaller. We make these notions precise below.

Definition A set of vectors B = {v1, . . . , vn} ⊆ Rm is linearly independent if
whenever

c1v1 + c2v2 + · · ·+ cnvn = 0,

it must be that
c1 = c2 = · · · = cn = 0.

Note: This is equivalent to saying that the m× n matrix

A = [v1 v2 · · · vn]

has the property that Ax = 0 has only the trivial solution x = 0.

Definition Given a set of B = {v1, . . . , vn} ⊆ Rm, we say that B spans W if
every vector in W can be written as a linear combination of the vectors in B.
In symbols, for every w ∈W , there exist c1, . . . , cn ∈ R such that

c1v1 + c2v2 + · · ·+ cnvn = w

Note: This is equivalent to saying that the matrix equation Ax = w has a
solution x for every w ∈W .

Remark It is not too difficult to show that: Any two linearly independent
vectors in R2 span all of R2; Any three vectors in R2 are automatically lin-
early dependent; Any set of vectors which includes the zero vector is a linearly
dependent set of vectors.

Definition If a set of vectors B is linearly independent and spans a subspace
W of a vector space V , then we say that B is a basis for W .

Remark The standard basis for R2 is e1 =

[
1

0

]
and e2 =

[
0

1

]
. The standard

basis for Rn is e1, e2, . . . , en where ei has an 1 in the ith row and 0’s elsewhere.
Theorem Given a square matrix A which is n × n. The following are

equivalent statements:

1. The columns of A are linearly independent.

2. The columns of A span Rn.

3. The determinant of A is non-zero.

4. The rref of A is the identity matrix I which has 1’s along the diagonal and
0’s elsewhere.
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2.6 Workshop 4: Matrix algebra and vector spaces

1. Express the vector

-5

-2

-1

 as a linear combination of the vectors

9

0

9

 ,
6

3

6

 ,
-3

0

0

 .
2. Solve the system below by writing Ax = b, find A−1 and use it to solve the

system for x.
−x1 + 3x2 = −1

−x1 − 6x2 = 2

2x2 −x3 = −1

3. Are the vectors linearly independent?
-2

2

-3

 ,
 2

-1

2

 ,
 1

-1

1




4. In the questions below, assume that A is a (general) m × n matrix, with m
rows and n columns, and b is a (general) vector in Rm. Circle true if the
statement is always true (for any possible choice of A and b), otherwise circle
false.

5. If Ax = b has a unique solution, true false
then b is in the span of the columns of A.

6. If m > n, then the columns of A are linearly independent. true false

7. If m < n, then the columns of A are linearly dependent. true false

8. Find the value for h that makes the given vectors linearly dependent. 4

-2

5

 ,
2

1

3

 ,
-2

-1

h

 .
9. Determine whether the given set of vectors is linearly independent/dependent.

No justification is necessary for full credit.
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(a)


0

1

1

 ,
0

0

0




(b)


0

1

1

 ,
-1

1

1

 ,
3

0

2




(c)


 1

-1

1

 ,
2

3

2

 ,
0

4

0




10. Find the solutions of the matrix equation Ax = 0 where A is the matrix
below. Please write your answer in parametric vector form.

A =


1 0 -3 2 0

-1 0 3 -2 1

0 0 1 3 0

0 0 0 0 0


Note: In this problem, parametric vector form means to express the solutions
to this problem as a linear combination of vectors with the free variables as the
scalars. This is meant to show you by example that the solutions to Ax = 0
are a subspace of Rn, since they are a span.

11. Determine whether the given vectors are linearly independent or linearly de-
pendent. If the vectors are linearly dependent find a non-trivial linear com-
bination of the vectors which give the zero vector. 1

-1

0

 ,
2

2

1

 ,
6

2

2


12. For each part, if possible, give an example of two sets A and B of vectors
{v1, v2, . . . , vn} in Rm where the set A is linearly independent and the set
B is linearly dependent, and if it is not possible to do so for either A or B
explain why in your own words.

1. One vector in R2,

2. two vectors in R2,

3. three vectors in R2,

4. two vectors in R3,

5. three vectors in R3,
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6. four vectors in R3.

7. For each problem find matrices which satisfy the given conditions. You don’t
have to justify how you found the matrices for each problem, but you must
verify the equality with calculations in each case.

(a) AB = BA but neither A nor B is 0 nor I.

(b) AB 6= BA.

(c) AB = AC but B 6= C.

(d) AB = 0 but neither A nor B is 0.

(e) AB = I but neither A nor B is I.
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2.7 Linear Transformations

A linear transformation is a function T : Rn → Rm whose inputs and outputs
are vectors, which satisfies the linearity conditions

1. T (x + y) = T (x) + T (y), and

2. T (cx) = cT (x).

Note: Notice that defining T (x) = Ax for an appropriately sized matrix A
defines a linear transformation. It turns out that these are the only linear
transformations as made precise in the following definition.

Definition Given a linear transformation T : Rn → Rm, we define the standard
matrix of T to be A = [T (e1) T (e2) . . . T (en)]. Notice that the size of A is
m× n.

The notions of span and linear independence have corresponding meanings
for linear transformations. In particular

Note: If the columns of A are linearly independent, then the linear transforma-
tion defined by TA(x) = Ax is one-to-one, meaning that T (x) = T (y) implies
x = y. Furthermore, if the columns of A span a vector subspace W , then we
say that T is onto W .

Definition A linear transformation T : V → W is said to be an isomorphism
if it is a one-to-one map and it is onto W .

Note: The word “map” is synonymous with “transformation” or “function”.
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2.8 Linear Transformation Problems

1. For each matrix A below, (0) state the domain and codomain of TA, (1) find
TA(e1), TA(e2), (2) find TA(v), TA(w), (3) describe in a few words what the
transformation is doing, and (4) give the matrix an appropriate “name”. For
the problems below use

e1 =

[
1

0

]
, e2 =

[
0

1

]
, v =

[
2

3

]
, w =

[
2

-3

]

1. A =

[
-1 0

0 1

]

2. A =

1 0

0 1

0 0


3. A =

[
-1 0

0 -1

]

4. A =

[
1 0

0 2

]

5. A =

[
3 0

0 3

]

6. A =

[
1 0

1 1

]

7. A =

[√
2/2

√
2/2

-
√

2/2
√

2/2

]
Now, for the problems below use

e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1

 , v =

2

1

3

 , w =

 2

1

-3



1. A =

[
1 0 0

0 0 1

]

2. A =

1 0 0

0 1 0

0 0 0
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3. Consider the linear transformation T which first rotates vectors in R2 by 90 ◦

counterclockwise, then reflects the result about the x-axis. Find the standard

matrix A of T as well as the image T

([
1

1

])
. Hint: the first column of A is

T

([
1

0

])
and the second column of A is T

([
0

1

])
.

4. Is the transformation T (v) = v +

[
1

1

]
a linear transformation from R2 to R2?

Explain.

5. For each of the above problems (where a matrix A was defined), find a basis
for the the null space nul(A) and the column space col(A).
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2.9 Eigenvectors and Eigenvalues

One of the most important concepts in linear algebra is the notion of eigenvectors
and eigenvalues. The eigenvalues of a matrix tell you a lot of information about
the matrix, and you can actually fully recover an n × n matrix A if you know
all its eigenvalues and there is a basis of Rn consisting of its eigenvectors (this
is called diagonalization).

Definition Given a square n× n matrix A, we say that λ ∈ R is an eigenvalue
of A with associated eigenvector v ∈ Rn if v 6= 0 and

Av = λv.

Note: The condition that at least the eigenvector v is non-zero is important
because if we allow the zero vector 0 to be an eigenvector then every number λ
would be an eigenvalue associated to this eigenvector. But we want eigenvalues
to be special, so that’s why we only allow non-zero vectors to be associated
eigenvectors.

Note: However, we want to use the fact that the set of eigenvectors associated
to a particular eigenvalue is a subspace, so we define the eigenspace associated
to an eigenvector λ of a matrix A to be the set of all eigenvectors of A associated
to λ and the zero vector (because any vector space must include 0).

Remark Note that if Av = λv and v 6= 0, then (A − λI)x = 0 has a non-
zero solution, hence the matrix A− λI has determinant equal to zero (because
if the determinant was non-zero then this matrix would be invertible, and the
only solution to the homogeneous equation would be the trivial solution). In
fact, this is exactly how we find eigenvalues and eigenvectors.

Theorem The eigenvalues of an n×n matrix A are the solutions λ to setting
the characteristic polynomial to zero

p(λ) = det(A− λI) = 0.

The eigenvectors of A are the vectors in the null space of A − λI, i.e., the
solution vectors to

(A− λI)x = 0.

2.10 Diagonalization

If an n × n matrix A has a basis of Rn which consists entirely of eigenvectors,
then A is diagonalizable. This means that

P−1AP = D
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for a diagonal matrix D and an invertible matrix P . It turns out that

P = [v1 v2 . . . vn], D =


λ1 0 · · · 0

0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

 .

Note: The operation P−1AP is called a change of basis because that’s what
multiplying by P , then A, then P−1 does. For example, let’s see what P−1AP
does to e1.

P−1APe1 = P−1Av1 = P−1λ1v1 = λ1e1.

So this transformation makes the standard basis vectors into eigenvectors. An-
other way to think about it is that using the eigenvectors {v1, . . . , vn} as your
basis for Rn (instead of the standard basis vectors e1, . . . , en) makes your matrix
A act like a diagonal matrix (which just scales the coordinate axes).

Note: It is sometimes useful to compute a diagonalization of a matrix A in order
to easily compute a large power of A. For instance, if A is diagonalizable then

A100 = (PDP−1)100 = PD100P−1.

You should make sure you understand which of the above equalities is non-
trivial. Also, make sure you understand why A100 is more difficult to compute
than D100 if D is diagonal (and A is not).
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2.11 Workshop 5: Eigenvectors and eigenvalues

1. The vector v =


1

2

2

1

 is an eigenvector of the matrix

A =


2 0 -4 0

-2 3 -8 0

0 0 -6 0

0 0 -3 0

 .
Find the eigenvalue λ associated to v. Hint: write down the definition of
eigenvalue.

2. If A is the 2×2 matrix with eigenvalues λ1 = 2 and λ2 = 3 and corresponding
eigenvectors

v1 =

[
1

2

]
and v2 =

[
-2

1

]
,

then what is A? Hint: Diagonalize!

3. Each of the following questions is answered with a number(s), matrix, or
vector.

(a) Find all eigenvalues of

2 0 3

1 3 0

1 0 1

.

(b) Find an eigenvector of

[
2 0

1 1

]
corresponding to the eigenvalue

λ = 2.

(c) List an eigenvector of the standard matrix of the linear transfor-
mation which reflects the standard basis vectors in R2 across the
line y = −x.

(d) If the eigenvalues of A are 1, 2, and 3, then what are the eigen-
values of A3?

4. In the questions below, assume that A is a square n× n matrix. Circle true
if the statement is always true, otherwise circle false.

(a) If A has n linearly independent eigenvectors, then A true
false
has n distinct eigenvalues.
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(b) The first standard basis vector e1 is an eigenvector true
false
of the standard matrix of the linear transformation
which rotates R2 by 180 ◦.

(c) If A is diagonalizable, then A is invertible. true false

(d) The vector

[
1

2

]
is an eigenvector true false

of the matrix

[
2 0

-2 3

]
.

(e) If zero is an eigenvalue of A, then true false
A is not invertible.

(f) If A is not invertible, then zero true false
is an eigenvalue of A.

(g) If A = PBP−1, then det(A) = det(B). true false

(h) If λ is an eigenvalue of A, and B is the true false
reduced row echelon form of A,
then λ is an eigenvalue of B too.
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Chapter 3

Part 3: Probability and
Statistics
(4 hours)

Will assume that you know about sample spaces, events, and the definition of
probability.

3.1 Basics: Conditional Probability

Definition: P (A|B) ≡ P (A∩B)/P (B) is the conditional probability of A given
B.
Example: Toss a fair die. Let A = {1, 2, 3} and B = {3, 4, 5, 6}. Then

P (A|B) =
P (A ∩B)

P (B)
=

1/6

4/6
= 1/4. 2

The idea of conditional probability is that you are sampling out of a specific
set of events, so your sample space is smaller. If the knowledge of whether
B happened does not effect the outcome of A, then we say that A and B are
independent events.
Definition: If P (A ∩B) = P (A)P (B), then A and B are independent events.

It follows from the definitions that
Theorem: If A and B are independent, then P (A|B) = P (A).

It can be easily computed whether two events are independent or not using
this theorem.
Example: Toss two dice. Let A = “Sum is 7” and B = “First die is 4”. Then

P (A) = 1/6, P (B) = 1/6, and

P (A ∩B) = P ((4, 3)) = 1/36 = P (A)P (B).

So A and B are independent. 2
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3.2 Basics: Random Variables

The term random variable is just a formal way of defining the outcome of an
experiment. In some texts we allow random variables to take values that are
“words” or “colors”, or anything else we choose. So in that case we could say
X is the random variable of the color of socks in my sock drawer.

For our purposes of this bootcamp, we will only allow random variables to
take numeric values. So for instance we could say X = 1 if the sock is white
and X = 2 if the sock is red, etc.
Definition: A random variable (RV) X is a function from the sample space Ω
to the real line, i.e., X : Ω→ R.
Example: Let X be the sum of two dice rolls. Then X((4, 6)) = 10. In
addition,

P (X = x) =



1/36 if x = 2

2/36 if x = 3
...

1/36 if x = 12

0 otherwise

2

We assign probabilities to events using a pmf. The pfm needs to satisfy
that the values it takes is non-negative and that the sum of all it’s values is 1
(where you replace ”sum” with ”integral” if the random variable is a continuous
random variable).
Definition: If the set of possible values of a RV X is finite or countably infinite,
then X is a discrete RV. Its probability mass function (pmf) is f(x) := P (X =
x). Note that

∑
x f(x) = 1.

Example: Flip 2 coins. Let X be the number of heads.

f(x) =


1/4 if x = 0 or 2

1/2 if x = 1

0 otherwise

2
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3.3 Well Known Discrete Distributions

Here are some well-known discrete RV’s that you may know (from Wikipedia):

1. Bernoulli(p). The discrete probability distribution of a random variable which
takes the value 1 with probability p and the value 0 with probability q = 1?p;
that is, the probability distribution of any single experiment that asks a yes?no
question, with pmf

f(k; p) =

{
p if k = 1,

1− p if k = 0

2. Binomial(n, p). The binomial distribution with parameters n and p is the
discrete probability distribution of the number of successes in a sequence of
n independent experiments, each asking a yes?no question, with pmf

f(k, n, p) = Pr(k;n, p) = Pr(X = k) =

(
n

k

)
pk(1− p)n−k.

The binomial distribution is frequently used to model the number of successes
in a sample of size n drawn with replacement from a population of size N.

3. Geometric(p). Based on convention, can be either of the two defintions.

The probability distribution of the number X of Bernoulli trials needed to get
one success, supported on the set {1, 2, 3, . . .} The probability distribution of
the number Y = X?1 of failures before the first success, supported on the set
{0, 1, 2, 3, . . .}.
These two different geometric distributions should not be confused with each
other. Often, the name shifted geometric distribution is adopted for the for-
mer one (distribution of the number X); however, to avoid ambiguity, it is
considered wise to indicate which is intended, by mentioning the support ex-
plicitly.

The geometric distribution gives the probability that the first occurrence of
success requires k independent trials, each with success probability p. If
the probability of success on each trial is p, then the probability that the
kth trial (out of k trials) is the first success is Pr(X = k) = (1− p)k−1p for
k = 1, 2, 3, . . ..

The above form of the geometric distribution is used for modeling the number
of trials up to and including the first success. By contrast, the following form
of the geometric distribution is used for modeling the number of failures until
the first success:

P (Y = k) = (1− p)kp for k = 0, 1, 2, 3, . . ..

In either case, the sequence of probabilities is a geometric sequence.

Example: For example, suppose an ordinary die is thrown repeatedly until
the first time a ”1” appears. The probability distribution of the number
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of times it is thrown is supported on the infinite set {1, 2, 3, . . .} and is a
geometric distribution with p = 1/6.

4. Negative Binomial.

The negative binomial distribution is a discrete probability distribution of the
number of successes in a sequence of independent and identically distributed
Bernoulli trials before a specified (non-random) number of failures (denoted
r) occurs. For example, if we define a 1 as failure, all non-1s as successes, and
we throw a dice repeatedly until 1 appears the third time (r = three failures),
then the probability distribution of the number of non-1s that appeared will
be a negative binomial distribution.

The probability mass function of the negative binomial distribution is

f(k; r, p) := P (X = k) =
(
k+r−1
k

)
pk(1− p)r for k = 0, 1, 2, . . .

5. Poisson(λ).

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number of events occurring in a fixed interval of time
or space if these events occur with a known constant rate and independently
of the time since the last event. The Poisson distribution can also be used
for the number of events in other specified intervals such as distance, area or
volume.

For instance, an individual keeping track of the amount of mail they receive
each day may notice that they receive an average number of 4 letters per
day. If receiving any particular piece of mail does not affect the arrival times
of future pieces of mail, i.e., if pieces of mail from a wide range of sources
arrive independently of one another, then a reasonable assumption is that
the number of pieces of mail received in a day obeys a Poisson distribution.
Other examples that may follow a Poisson include the number of phone calls
received by a call center per hour and the number of decay events per second
from a radioactive source.

An event can occur 0, 1, 2, . . . times in an interval. The average number of
events in an interval is designated λ (lambda). Lambda is the event rate, also
called the rate parameter. The probability of observing k events in an interval
is given by the equation

P (k events in interval) = e−λ
λk

k!

where λ is the average number of events per interval e is the number 2.71828 . . .
(Euler’s number) the base of the natural logarithms k takes values 0, 1, 2, . . .
k! = k(k − 1)(k − 2) . . . (2)(1) is the factorial of k. This equation is the
probability mass function for a Poisson distribution.

Notice that this equation can be adapted if, instead of the average number of
events λ, we are given a time rate r for the events to happen. Then λ = rt
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(with r in units of 1/time), and

P (k events in interval t) = e−rt
(rt)k

k!

Example: On a particular river, overflow floods occur once every 100 years
on average. Calculate the probability of k = 0, 1, 2, 3, 4, 5, or 6 overflow
floods in a 100-year interval, assuming the Poisson model is appropriate.

Because the average event rate is one overflow flood per 100 years, ? = 1

P (k overflow floods in 100 years) =
λke−λ

k!
=

1ke−1

k!

P (k = 0 overflow floods in 100 years) =
10e−1

0!
=
e−1

1
≈ 0.368

P (k = 1 overflow flood in 100 years) =
11e−1

1!
=
e−1

1
≈ 0.368

P (k = 2 overflow floods in 100 years) =
12e−1

2!
=
e−1

2
≈ 0.184

The table below gives the probability for 0 to 6 overflow floods in a 100-year
period.

k P(k overflow floods in 100 years)

0 0.368

1 0.368

2 0.184

3 0.061

4 0.015

5 0.003

6 0.0005

2

Example: Ugarte and colleagues report that the average number of goals
in a World Cup soccer match is approximately 2.5 and the Poisson model is
appropriate.

Because the average event rate is 2.5 goals per match, ? = 2.5.
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P (k goals in a match) =
2.5ke−2.5

k!

P (k = 0 goals in a match) =
2.50e−2.5

0!
=
e−2.5

1
≈ 0.082

P (k = 1 goal in a match) =
2.51e−2.5

1!
=

2.5e−2.5

1
≈ 0.205

P (k = 2 goals in a match) =
2.52e−2.5

2!
=

6.25e−2.5

2
≈ 0.257

The table below gives the probability for 0 to 7 goals in a match.

k P(k goals in a World Cup soccer match)

0 0.082

1 0.205

2 0.257

3 0.213

4 0.133

5 0.067

6 0.028

7 0.010

2
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3.4 Continuous Random Variables and cdf’s

Continuous distributions are concerned with random variables that take con-
tinuous rather than discrete values. For example, temperature, the amount of
time for something to happen, or the length of a caterpillar are all continuous
random variables.
Definition: A continuous RV is one with probability zero at every individual
point, and for which there exists a probability density function (pdf) f(x) such
that P (X ∈ A) =

∫
A
f(x) dx for every set A. Note that

∫
R f(x) dx = 1.

Here is a contrived example
Example: Pick a random number between 3 and 7. Then

f(x) =

{
1/4 if 3 ≤ x ≤ 7

0 otherwise
2

Note: Notice that in order to verify the property that the total probability is 1
you can integrate or just draw a picture and use simple geometry.

Notation: Often you will see the notation X ∼ N(0, 1) which means X is
normally distrubuted. In general “∼” means “is distributed as”. For instance,
X ∼ Unif(0, 1) means that X has the uniform distribution on [0, 1].

The cumulative distribution function tells you the probability that a ran-
dom variable’s value is at most some upper limit. This is a surprisingly useful
concept.
Definition: For any RV X (discrete or continuous), the cumulative distribution
function (cdf) is

F (x) ≡ P (X ≤ x) =

{ ∑
y≤x f(y) if X is discrete∫ x

−∞ f(y) dy if X is continuous

Note: Note that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. In addition, if X is
continuous, then by the FTC we have d

dxF (x) = f(x).

Here are a couple examples to practice on.
Example: Flip 2 coins. Let X be the number of heads.

F (x) =


0 if x < 0

1/4 if 0 ≤ x < 1

3/4 if 1 ≤ x < 2

1 if x ≥ 2

2

Example: if X ∼ Exp(λ) (i.e., X is exponential with parameter λ), then
f(x) = λe−λx and F (x) = 1− e−λx, x ≥ 0. 2
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3.5 Well Known Continuous Distributions

Here are some well-known continuous (from Wikipedia) RV’s:

1. Uniform(a, b). the continuous uniform distribution or rectangular distribution
is a family of symmetric probability distributions such that for each member
of the family, all intervals of the same length on the distribution’s support are
equally probable.

The pdf of the continuous uniform distribution is

f(x) =

{
1
b−a for 1 ≤ x ≤ b,
0 otherwise.

.

The cumulative distribution function is:

F (x) =


0 for x < a

x−a
b−a for a ≤ x ≤ b

1 for x > b

Its inverse is:

F−1(p) = a+ p(b− a) for 0 < p < 1.

2. Exponential(λ).

the exponential distribution (also known as negative exponential distribution)
is the probability distribution that describes the time between events in a
Poisson point process, i.e., a process in which events occur continuously and
independently at a constant average rate. It is a particular case of the gamma
distribution. It is the continuous analogue of the geometric distribution, and
it has the key property of being memoryless. In addition to being used for
the analysis of Poisson point processes it is found in various other contexts.

The probability density function (pdf) of an exponential distribution is

f(x;λ) =

{
λe−λx x ≥ 0,

0 x < 0.

Alternatively, this can be defined using the right-continuous Heaviside step
function, H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0,

Example: if X ∼ Exp(λ) (i.e., X is exponential with parameter λ), then
f(x) = λe−λx and F (x) = 1− e−λx, x ≥ 0. 2

f(x;λ) = λe−λxH(x).
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Here λ > 0 is the parameter of the distribution, often called the rate parame-
ter. The distribution is supported on the interval [0,∞). If a random variable
X has this distribution, we write X ∼ Exp(λ).

3. Normal(µ, σ2).

The normal distribution is sometimes informally called the bell curve. For-
mally, a random variable with a Gaussian distribution is said to be normally
distributed and is called a normal deviate.

The probability density of the normal distribution is

f(x | µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

where

• µ is the mean or expectation of the distribution (and also its median and
mode),

• σ is the standard deviation, and

• σ2 is the variance.

Note: The normal distribution is useful because of the central limit theorem.
In its most general form, under some conditions (which include finite vari-
ance), it states that averages of samples of observations of random variables
independently drawn from independent distributions converge in distribution
to the normal, that is, become normally distributed when the number of ob-
servations is sufficiently large. Physical quantities that are expected to be the
sum of many independent processes (such as measurement errors) often have
distributions that are nearly normal. Moreover, many results and methods
(such as propagation of uncertainty and least squares parameter fitting) can
be derived analytically in explicit form when the relevant variables are nor-
mally distributed.
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3.6 Simulating Simple Random Variables

We’ll make a brief aside here to show how to simulate some very simple random
variables. So the idea is like this: suppose you are writing code for a game
and you need to simulate a dice toss. How do you do it? Or suppose you have
some discrete random variable that you want to simulate in a game, so like my
socks come out of a video-game-dresser-drawer with probability such and such
for each color, how do you program that? Well here is some examples for how
to simulate some simple discrete random variables.

Example (Discrete Uniform): Consider the discrete uniform distribution
on {1, 2, . . . , n}, which is to say X = i with probability 1/n for i = 1, 2, . . . , n.
(If you are an *old school* gamer this is an n-sided dice toss.)

If U ∼ Unif(0, 1) is a continuous random variable with the uniform distribu-
tion on the interval [0, 1], then we can easily create a discrete uniform random
variate from U simply by setting X = dnUe, where d·e is the “ceiling” (or “round
up”) function.

For example, if n = 10 and we sample a Unif(0,1) random variable U = 0.73,
then X = d7.3e = 8.

2

Example: Another example. Consider

P (X = x) =


0.25 if x = −2

0.10 if x = 3

0.65 if x = 4.2

0 otherwise

This random variable isn’t simulated by a die toss. Instead, we use what’s
called the inverse transform method.

x f(x) P (X ≤ x) Unif(0,1)’s

−2 0.25 0.25 [0.00, 0.25]

3 0.10 0.35 (0.25, 0.35]

4.2 0.65 1.00 (0.35, 1.00)

Sample U ∼ Unif(0, 1). Choose the corresponding x-value, i.e., X = F−1(U).
For example, if U = 0.46 then we have that X = 4.2. If U = 0.20 then X = −2.
In this way we obtain a discrete random variable

2
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3.7 Expected Value

The expected value of a random variable is defined formally below, but infor-
mally you can think of it as the “most likely outcome” or slightly closer to the
truth as the amount that you will end up with if you perform an experiment
over and over again. For example, if we play a game where I get $1 from you for
every heads I flip and you get $1 from me for every tails I flip (for a fair coin)
then the expected value of the game (for either of us) is $0. But if we play that
we each toss a coin and I only win if they are both heads, then the expected
value of the game is −50c for me and 50c for you. Since our respective expected
values sum to zero this is called a zero sum game.
Definition: The expected value (or mean) of a RV X is

E[X] ≡

{ ∑
x xf(x) if X is discrete∫

R xf(x) dx if X is continuous
=

∫
R
x dF (x).

Example: Suppose that X ∼ Bernoulli(p). Then

X =

{
1 with prob. p

0 with prob. 1− p (= q)

and we have E[X] =
∑
x xf(x) = p.

2

Note: This is like saying if you have an unfair coin which flips heads with prob-
ability p and tails with probability 1 − p, then assuming X = 1 is heads and
X = 0 is tails you get that the expected value of the coin toss is E(X) =
(1)p+ (0)(1− p) = p.

Example: Suppose that X ∼ Uniform(a, b). Then

f(x) =

{
1
b−a if a < x < b

0 otherwise

and we have E[X] =
∫
R xf(x) dx = (a+ b)/2.

2

Note: Again, this makes sense if you think about it because the expected “loca-
tion” of the random variable X which is uniform over the interval [a, b] is right
in the middle, at the average of the two values of the endpoints, at (a+ b)/2.

Example: Suppose that X ∼ Exponential(λ). Then

f(x) =

{
λe−λx if x > 0

0 otherwise
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and we have (after integration by parts and L’Hopitals Rule)

E[X] =

∫
R
xf(x) dx =

∫ ∞
0

xλe−λx dx =
1

λ
.

2

Def/Thm: (the “Law of the Unconscious Statistician” or “LOTUS” aka “The
Flower Rule”): Suppose that h(X) is some function of the RV X. Then

E[h(X)] =

{ ∑
x h(x)f(x) if X is disc∫

R h(x)f(x) dx if X is cts
=

∫
R
h(x) dF (x).

The function h(X) can be anything “nice”, e.g., h(X) = X2 or 1/X or
sin(X) or ln(X).

Example: Suppose X is the following discrete RV:

x 2 3 4

f(x) 0.3 0.6 0.1

Then E[X3] =
∑
x x

3f(x) = 8(0.3) + 27(0.6) + 64(0.1) = 25.

2

Example: Suppose X ∼ Unif(0, 2). Then

E[Xn] =

∫
R
xnf(x) dx = 2n/(n+ 1).

2
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3.8 Workshop 6: Random variables

Discrete RV Problems

1. A die is rolled 5 times. Let X denote the number of times that you see a
4, 5, or 6.

(a) What’s the distribution of X?

Solution: X ∼ Bin(5, 1/2). 2

(b) Find P (X = 4).

Solution:

P (X = 4) =

(
5

4

)(
1

2

)4(
1

2

)5−4

= 5/32. 2

2. Suppose X ∼ Pois(2). Find P (X > 3).

Solution:

P (X > 3) = 1− P (X ≤ 3) = 1−
3∑
k=0

e−22k/k! = 0.1429. 2

3. Suppose X has the following discrete distribution.

x −1 0 2 3

P (X = x) 0.2c 0.3 0.2 0.1

(a) Find the value of c that will make the p.m.f. sum to 1.

Solution: Note that

1 =
∑
x

P (X = x) = 0.2c+ 0.3 + 0.2 + 0.1.

This implies that c = 2. 2

(b) Find the c.d.f. F (x) for all x.
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Solution: We have

F (x) = P (X ≤ x) =



0 if x < −1

0.4 if −1 ≤ x < 0

0.7 if 0 ≤ x < 2

0.9 if 2 ≤ x < 3

1.0 if x ≥ 3

2

(c) Calculate E[X].

Solution:
E[X] =

∑
x

xP (X = x) = 0.3. 2

(d) Calculate Var(X).

Solution:
E[X2] =

∑
x

x2P (X = x) = 2.1.

This implies that Var(X) = E[X2]− (E[X])2 = 2.01. 2

(e) Calculate P (1 ≤ X ≤ 2).

Solution: Since X can only equal −1, 0, 2, 3, we have P (1 ≤ X ≤
2) = P (X = 2) = 0.2. 2

4. Suppose that X is the lifetime of a lightbulb and that X ∼ Exp(2/year).

(a) What’s the probability that the bulb will survive at least a year,
P (X > 1)?

Solution: IfX ∼ Exp(λ), we know from class that P (X > t) = e−λt.
Thus, in this problem, we find that P (X > 1) = e−2. 2

(b) Suppose the bulb has already survived a year. What’s the probabil-
ity that it will survive another year, i.e., P (X > 2 |X > 1)?

Solution: By conditional probability, we have

P (X > 2 |X > 1) =
P (X > 2 ∩ X > 1)

P (X > 1)
=

P (X > 2)

P (X > 1)
=

e−4

e−2
= e−2.

Note that this is the same answer as in (a), and is an example of what
is called the memoryless property (which we will talk about later).
2
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5. Suppose that X is continuous with p.d.f. f(x) = cx2, 0 ≤ x ≤ 1.

(a) Find the value of c that will make the p.d.f. integrate to 1.

Solution: Note that

1 =

∫
<
f(x) dx =

∫ 1

0

cx2 dx = c/3.

This implies that c = 3. 2

(b) Find the c.d.f. F (x) for all x.

Solution:

F (x) = P (X ≤ x) =


0 if x < 0

x3 if 0 ≤ x ≤ 1

1 if x ≥ 1

2

(c) Calculate E[X].

Solution:

E[X] =

∫
<
xf(x) dx =

∫ 1

0

3x3 dx = 3/4. 2

(d) Calculate Var(X).

Solution: Similarly,

E[X2] =

∫
<
x2f(x) dx =

∫ 1

0

3x4 dx = 3/5.

This implies that Var(X) = E[X2]− (E[X])2 = 3/80. 2

(e) Calculate P (0 ≤ X ≤ 1/2).

Solution: P (0 ≤ X ≤ 1/2) = F (1/2)− F (0) = 1/8. 2

6. Let E[X] = −4, Var(X) = 5, and Z = −4X + 7. Find E[−3Z] and
Var(−3Z).

Solution: We have

E[−3Z] = E[12X − 21] = 12E[X]− 21 = −69. 2
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and

Var(−3Z) = Var(12X − 21) = 144Var(X) = 720. 2

7. When a machine is adjusted properly, 50% of the items it produces are
good and 50% are bad. However, the machine is improperly adjusted 10%
of the time; in this case, 25% of the items it makes are good and 75% are
bad. Suppose that 5 items produced by the machine are selected at ran-
dom and inspected. If 4 of these items are good (and 1 is bad), what’s the
probability that the machine was adjusted properly at the time? Hint:
Try Bayes Theorem using Binomial conditional probabilities.

Solution: Let X be the number of good items (out of 5). Further, define
the following events.

P = “machine is properly adjusted”, which implies X ∼ Bin(5, 1/2)

I = “machine is improperly adjusted”, which implies X ∼ Bin(5, 1/4)

Now Bayes implies that

P (P |X = 4) =
P (X = 4|P )P (P )

P (X = 4|P )P (P ) + P (X = 4|I)P (I)

=

(
5

4

)(
1
2

)4( 1
2

)1
(0.9)(

5

4

)(
1
2

)4( 1
2

)1
(0.9) +

(
5

4

)(
1
4

)4( 3
4

)1
(0.1)

= 0.9897. 2

8. BONUS: Suppose that X ∼ Unif(−1, 6). Compare the upper bound on
the probability P (|X − µ| ≥ 1.5σ) obtained from Chebychev’s inequality
with the exact probability.

Solution: By Chebychev, we get the following bound.

P (|X − µ| ≥ 1.5σ) ≤ 1

(1.5)2
= 4/9. 2

Now let’s get the exact probability. First of all, recall that if X ∼ U(a, b),
then E[X] = (a + b)/2 and Var(X) = (a − b)2/12. Since X ∼ U(−1, 6),
we have E[X] = 5/2 and σ2 = Var(X) = 49/12. Thus, we can make the
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following exact calculations.

P (|X − µ| ≥ 1.5σ) = P

(∣∣∣∣X − 5

2

∣∣∣∣ ≥ 1.5 ·
√

49/12

)
= 1− P

(∣∣∣∣X − 5

2

∣∣∣∣ < 3.03

)
= 1− P

(
−3.03 < X − 5

2
< 3.03

)
= 1− P

(
−0.53 < X < 5.53

)
= 1−

∫ 5.53

−0.53

f(x) dx

= 1− 1

7
(5.53 + 0.53) = 0.1343. 2

9. What Zombies song is based on Ben E. King’s “Stand By Me” (which was
performed at the recent Royal Wedding)?

Solution: “Time of the Season” 2

Continuous RV Problems

1. Suppose X ∼ Unif(1, 3). Find the p.d.f. of Z = eX .

Hint: The c.d.f. of Z is

G(z) = P (Z ≤ z)
= P (eX ≤ z)
= P (X ≤ `n(z))

=

∫ `n(z)

1

f(x) dx (if 1 ≤ `n(z) ≤ 3)

= (`n(z)− 1)/2.

Now you can get the p.d.f.

g(z) =
d

dz
G(z) =

{
0 if z < e or z > e3

1
2z if e ≤ z ≤ e3

2

2. Suppose X has p.d.f. f(x) = 2xe−x
2

, x ≥ 0. Find the distribution of
Z = X2.
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Hint: The c.d.f. of Z is

G(z) = P (Z ≤ z)
= P (X2 ≤ z)
= P (−

√
z ≤ X ≤

√
z)

= P (0 ≤ X ≤
√
z) (since X ≥ 0)

=

∫ √z
0

2xe−x
2

dx

= 1− e−z.

Thus, Z is Exp(1). 2

3. Suppose X ∼ Unif(1, 3). Find the p.d.f. of Z = eX .

Solution: The c.d.f. of Z is

G(z) = P (Z ≤ z)
= P (eX ≤ z)
= P (X ≤ `n(z))

=

∫ `n(z)

1

f(x) dx (if 1 ≤ `n(z) ≤ 3)

= (`n(z)− 1)/2.

Now you can get the p.d.f.

g(z) =
d

dz
G(z) =

{
0 if z < e or z > e3

1
2z if e ≤ z ≤ e3

2

4. Suppose X has p.d.f. f(x) = 2xe−x
2

, x ≥ 0. Find the distribution of
Z = X2.

Solution: The c.d.f. of Z is

G(z) = P (Z ≤ z)
= P (X2 ≤ z)
= P (−

√
z ≤ X ≤

√
z)

= P (0 ≤ X ≤
√
z) (since X ≥ 0)

=

∫ √z
0

2xe−x
2

dx

= 1− e−z.

Thus, Z is Exp(1). 2
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5. (Hines et al., 4–1). A refrigerator manufacturer subjects his finished
products to a final inspection. Of interest are two categories of defects:
scratches or flaws in the porcelain finish, and mechanical defects. The
number of each type of defects is a random variable. The results of in-
specting 50 refrigerators are shown in the following joint p.m.f. table,
where X represents the occurrence of finish defects and Y represents the
occurrence of mechanical defects.

Y \X 0 1 2 3 4 5

0 11/50 4/50 2/50 1/50 1/50 1/50

1 8/50 3/50 2/50 1/50 1/50

2 4/50 3/50 2/50 1/50

3 3/50 1/50

4 1/50

(a) Find the marginal probability mass functions of X and Y .

Solution: Let’s re-write the table, this time including the marginals.

Y \X 0 1 2 3 4 5 fY (y)

0 11/50 4/50 2/50 1/50 1/50 1/50 20/50

1 8/50 3/50 2/50 1/50 1/50 15/50

2 4/50 3/50 2/50 1/50 10/50

3 3/50 1/50 4/50

4 1/50 1/50

fX(x) 27/50 11/50 6/50 3/50 2/50 1/50

2

(b) Find the conditional p.m.f. of mechanical defects, given that there
are no finish defects.

Solution:

f(y|X = 0) =
f(0, y)

fX(0)
=

f(0, y)

27/50
=



11/27 if y = 0

8/27 if y = 1

4/27 if y = 2

3/27 if y = 3

1/27 if y = 4

0 otherwise

2
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6. Suppose that f(x, y) = cxy2 for 0 < x < y2 < 1 and 0 < y < 1.

(a) Find c.

Solution:

1 =

∫ ∫
R2

f(x, y) dx dy =

∫ 1

0

∫ y2

0

cxy2 dx dy = c/14.

This immediately implies that c = 14. 2

(b) Find the marginal p.d.f. of X, fX(x).

Solution:

fX(x) =

∫
R
f(x, y) dy =

∫ 1

√
x

14xy2 dy =
14

3
(x−x5/2), 0 < x < 1. 2

(c) Find the marginal p.d.f. of Y , fY (y).

Solution:

fY (y) =

∫
R
f(x, y) dx =

∫ y2

0

14xy2 dx = 7y6, 0 < y < 1. 2

(d) Find E[X].

Solution:

E[X] =

∫
R
xfX(x) dx =

∫ 1

0

14

3
(x2 − x7/2) dx =

14

27
. 2

(e) Find E[Y ].

Solution:

E[Y ] =

∫
R
yfY (y) dy =

∫ 1

0

7y7 dy =
7

8
. 2

(f) Find the conditional p.d.f. of X given Y = y, f(x|y).

Solution:

f(x|y) =
f(x, y)

fY (y)
=

2x

y4
, 0 < x < y2 < 1. 2
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7. Mathemusical Bonus: What is the largest prime number to be found
in the lyrics of a song from the Top-40 era?

Solution: Tommy Tutone’s song “Jenny” mentions the prime number
8675309.
www.youtube.com/watch?v=6WTdTwcmxyo 2
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3.9 Moments and Standard Deviation

Definitions: E[Xn] is the nth moment of X.
E[(X − E[X])n] is the nth central moment of X.
Var(X) := E[(X − E[X])2] is the variance of X.
The standard deviation of X is

√
Var(X).

Theorem: Var(X) = E[X2]− (E[X])2

Example: Suppose X ∼ Bern(p). Recall that E[X] = p. Then

E[X2] =
∑
x

x2f(x) = p and

Var(X) = E[X2]− (E[X])2 = p(1− p).

2

Example: Suppose X ∼ Exp(λ). By LOTUS,

E[Xn] =

∫ ∞
0

xnλe−λx dx = n!/λn.

Var(X) = E[X2]− (E[X])2 =
2

λ2
−
( 1

λ

)2

= 1/λ2.

2

Theorem: E[aX + b] = aE[X] + b and Var(aX + b) = a2Var(X).

Example: If X ∼ Exp(3), then

E[−2X + 7] = −2E[X] + 7 = −2

3
+ 7.

Var(−2X + 7) = (−2)2Var(X) =
4

9
.

2
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3.10 Moment Generating Functions

Definition: MX(t) := E[etX ] is the moment generating function (mgf) of the
RV X. (MX(t) is a function of t, not of X!)

Example: : X ∼ Bern(p). Then

MX(t) = E[etX ] =
∑
x

etxf(x) = et·1p+ et·0q = pet + q. 2

Example: : X ∼ Exp(λ). Then

MX(t) =

∫
<
etxf(x) dx = λ

∫ ∞
0

e(t−λ)x dx =
λ

λ− t
if λ > t. 2

Theorem: Under certain technical conditions,

E[Xk] =
dk

dtk
MX(t)

∣∣∣∣
t=0

, k = 1, 2, . . . .

Thus, you can generate the moments of X by taking derivatives of the the
mgf. (hmmm... what else were we talking about recently that you could figure
out from taking a bunch of derivatives of something...?)

Example: : X ∼ Exp(λ). Then MX(t) = λ
λ−t for λ > t. So

E[X] =
d

dt
MX(t)

∣∣∣∣
t=0

=
λ

(λ− t)2

∣∣∣∣
t=0

= 1/λ.

Further,

E[X2] =
d2

dt2
MX(t)

∣∣∣∣
t=0

=
2λ

(λ− t)3

∣∣∣∣
t=0

= 2/λ2.

Thus,

Var(X) = E[X2]− (E[X])2 =
2

λ2
− 1

λ2
= 1/λ2. 2

Moment generating functions have many other important uses, some of which
we’ll talk about in this course.
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3.11 Functions of Random Variables

Problem: Suppose we have a RV X with pmf/pdf f(x). Let Y = h(X). Find
g(y), the pmf/pdf of Y .

Examples (can be proven):

If X ∼ Nor(0, 1), then Y = X2 ∼ χ2(1).

If U ∼ Unif(0, 1), then Y = − 1
λ ln(U) ∼ Exp(λ).

2

Discrete Example: Let X denote the number of H’s from two coin tosses.
We want the pmf for Y = X3 −X.

x 0 1 2

f(x) 1/4 1/2 1/4

y = x3 − x 0 0 6

This implies that g(0) = P (Y = 0) = P (X = 0 or 1) = 3/4 and g(6) = P (Y =
6) = 1/4. In other words,

g(y) =

{
3/4 if y = 0

1/4 if y = 6
.

2

Continuous Example: Suppose X has pdf f(x) = |x|, −1 ≤ x ≤ 1. Let’s find
the pdf of Y = X2.

First of all, the cdf of Y is

G(y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

=

∫ √y
−√y
|x| dx = y, 0 < y < 1.

Thus, the pdf of Y is g(y) = G′(y) = 1, 0 < y < 1, indicating that Y ∼
Unif(0, 1).

2
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3.12 Jointly Distributed Random Variables

Consider two random variables interacting together — think height and weight.

Definition: The joint cdf of X and Y is

F (x, y) := P (X ≤ x, Y ≤ y), for all x, y.

Remark: The marginal cdf of X is FX(x) = F (x,∞). (We use the X subscript
to remind us that it’s just the cdf of X all by itself.) Similarly, the marginal cdf
of Y is FY (y) = F (∞, y).

Definition: If X and Y are discrete, then the joint pmf of X and Y is
f(x, y) ≡ P (X = x, Y = y). Note that

∑
x

∑
y f(x, y) = 1.

Remark: The marginal pmf of X is

fX(x) = P (X = x) =
∑
y

f(x, y).

The marginal pmf of Y is

fY (y) = P (Y = y) =
∑
x

f(x, y).

Example: The following table gives the joint pmf f(x, y), along with the ac-
companying marginals.

f(x, y) X = 2 X = 3 X = 4 fY (y)

Y = 4 0.3 0.2 0.1 0.6

Y = 6 0.1 0.2 0.1 0.4

fX(x) 0.4 0.4 0.2 1

2

Definition: If X and Y are continuous, then the joint pdf of X and Y is

f(x, y) ≡ ∂2

∂x∂yF (x, y). Note that
∫
R
∫
R f(x, y) dx dy = 1.

Remark: The marginal pdf ’s of X and Y are

fX(x) =

∫
R
f(x, y) dy and fY (y) =

∫
R
f(x, y) dx.

Example: Suppose the joint pdf is

f(x, y) =
21

4
x2y, x2 ≤ y ≤ 1.
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Then the marginal pdf’s are:

fX(x) =

∫
R
f(x, y) dy =

∫ 1

x2

21

4
x2y dy =

21

8
x2(1− x4), −1 ≤ x ≤ 1

and

fY (y) =

∫
R
f(x, y) dx =

∫ √y
−√y

21

4
x2y dx =

7

2
y5/2, 0 ≤ y ≤ 1. 2

2

3.13 Independent Random Variables

Definition: X and Y are independent RV’s if

f(x, y) = fX(x)fY (y) for all x, y.

Theorem: X and Y are indep if you can write their joint pdf as f(x, y) =
a(x)b(y) for some functions a(x) and b(y), and x and y don’t have funny limits
(their domains do not depend on each other).

Examples: If f(x, y) = cxy for 0 ≤ x ≤ 2, 0 ≤ y ≤ 3, then X and Y are
independent.

If f(x, y) = 21
4 x

2y for x2 ≤ y ≤ 1, then X and Y are not independent.

If f(x, y) = c/(x + y) for 1 ≤ x ≤ 2, 1 ≤ y ≤ 3, then X and Y are not
independent.

2

Definition: The conditional pdf (or pmf ) of Y given X = x is f(y|x) ≡
f(x, y)/fX(x) (assuming fX(x) > 0).

This is a legit pmf/pdf. For example, in the continuous case,
∫
R
f(y|x) dy =

1, for any x.

Example: Suppose f(x, y) = 21
4 x

2y for x2 ≤ y ≤ 1. Then

f(y|x) =
f(x, y)

fX(x)
=

21
4 x

2y
21
8 x

2(1− x4)
=

2y

1− x4
, x2 ≤ y ≤ 1. 2

Theorem: If X and Y are indep, then f(y|x) = fY (y) for all x, y.

Proof: By definition of conditional and independence,

f(y|x) =
f(x, y)

fX(x)
=

fX(x)fY (y)

fX(x)
. 2
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Definition: The conditional expectation of Y given X = x is

E[Y |X = x] ≡

{ ∑
y yf(y|x) discrete∫

R yf(y|x) dy continuous

Example: : The expected weight of a person who is 7 feet tall (E[Y |X = 7])
will probably be greater than that of a random person from the entire popula-
tion (E[Y ]).

Example: : f(x, y) = 21
4 x

2y, if x2 ≤ y ≤ 1. Then

E[Y |x] =

∫
R
yf(y|x) dy =

∫ 1

x2

2y2

1− x4
dy =

2

3
· 1− x6

1− x4
. 2
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3.14 Covariance and Correlation

“Definition” (two-dimensional LOTUS): Suppose that h(X,Y ) is some func-
tion of the RV’s X and Y . Then

E[h(X,Y )] =

{ ∑
x

∑
y h(x, y)f(x, y) if (X,Y ) is discrete∫

R
∫
R h(x, y)f(x, y) dx dy if (X,Y ) is continuous

Theorem: Whether or not X and Y are independent, we have E[X + Y ] =
E[X] + E[Y ].

Theorem: If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).

Definition: X1, . . . , Xn form a random sample from f(x) if (i) X1, . . . , Xn are
independent, and (ii) each Xi has the same pdf (or pmf) f(x).

Notation: X1, . . . , Xn
iid∼ f(x). (The term “iid” reads independent and identi-

cally distributed.)

Example: If X1, . . . , Xn
iid∼ f(x) and the sample mean X̄n ≡

∑n
i=1Xi/n, then

E[X̄n] = E[Xi] and Var(X̄n) = Var(Xi)/n. Thus, the variance decreases as n
increases. 2

Definition: The covariance between X and Y is

Cov(X,Y ) ≡ E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Note that Var(X) = Cov(X,X).

Theorem: If X and Y are independent RV’s, then Cov(X,Y ) = 0.

Remark: Cov(X,Y ) = 0 doesn’t mean X and Y are independent!

Example: Suppose X ∼ Unif(−1, 1) and Y = X2. Then X and Y are clearly
dependent. However,

Cov(X,Y ) = E[X3]− E[X]E[X2] = E[X3] =

∫ 1

−1

x3

2
dx = 0.

2

Theorem: Cov(aX, bY ) = abCov(X,Y ).

Theorem: Whether or not X and Y are independent,

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

and
Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y ).
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Definition: The correlation between X and Y is

ρ ≡ Cov(X,Y )√
Var(X)Var(Y )

.

Theorem: −1 ≤ ρ ≤ 1.

Example: Consider the following joint pmf.

f(x, y) X = 2 X = 3 X = 4 fY (y)

Y = 40 0.00 0.20 0.10 0.3

Y = 50 0.15 0.10 0.05 0.3

Y = 60 0.30 0.00 0.10 0.4

fX(x) 0.45 0.30 0.25 1

E[X] = 2.8, Var(X) = 0.66, E[Y ] = 51, Var(Y ) = 69,

E[XY ] =
∑
x

∑
y

xyf(x, y) = 140,

and

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)Var(Y )
= −0.415. 2

Portfolio Example: Consider two assets, S1 and S2, with expected returns
E[S1] = µ1 and E[S2] = µ2, and variabilities Var(S1) = σ2

1 , Var(S2) = σ2
2 , and

Cov(S1, S2) = σ12.

Define a portfolio P = wS1 + (1− w)S2, where w ∈ [0, 1]. Then

E[P ] = wµ1 + (1− w)µ2

Var(P ) = w2σ2
1 + (1− w)2σ2

2 + 2w(1− w)σ12.

Setting d
dwVar(P ) = 0, we obtain the critical point that (hopefully) mini-

mizes the variance of the portfolio,

w =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12
. 2

3.15 Summary of Distributions

1. X ∼ Bernoulli(p).

f(x) =

{
p if x = 1

1− p (= q) if x = 0

E[X] = p, Var(X) = pq, MX(t) = pet + q.
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2. Y ∼ Binomial(n, p).

If X1, X2, . . . , Xn
iid∼ Bern(p) (i.e., Bernoulli(p) trials), then Y =

∑n
i=1Xi ∼

Bin(n, p).

f(y) =

(
n

y

)
pyqn−y, y = 0, 1, . . . , n.

E[Y ] = np, Var(Y ) = npq, MY (t) = (pet + q)n.

3. X ∼ Geometric(p)

is the number of Bern(p) trials until a success occurs. For example, “FFFS”
implies that X = 4.

f(x) = qx−1p, x = 1, 2, . . . .

E[X] = 1/p, Var(X) = q/p2, MX(t) = pet/(1− qet).

4. Y ∼ NegBin(r, p)

is the sum of r iid Geom(p) RV’s, i.e., the time until the rth success occurs.
For example, “FFFSSFS” implies that NegBin(3, p) = 7.

f(y) =

(
y − 1

r − 1

)
qy−rpr, y = r, r + 1, . . . .

E[Y ] = r/p, Var(Y ) = qr/p2.

5. X ∼ Poisson(λ).

Definition: A counting process N(t) tallies the number of “arrivals” observed
in [0, t]. A Poisson process is a counting process satisfying the following.

i. Arrivals occur one-at-a-time at rate λ (e.g., λ = 4 customers/hr)

ii. Independent increments, i.e., the numbers of arrivals in disjoint time
intervals are independent.

iii. Stationary increments, i.e., the distribution of the number of arrivals in
[s, s+ t] only depends on t.

Then X ∼ Pois(λ) is the number of arrivals that a Poisson process experiences
in one time unit, i.e., N(1).

f(x) =
e−λλx

x!
, x = 0, 1, . . . .

E[X] = λ = Var(X), MX(t) = eλ(et−1).

And the continuous distributions we discussed
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1. X ∼ Uniform(a, b).

f(x) = 1
b−a for a ≤ x ≤ b, E[X] = a+b

2 , Var(X) = (b−a)2

12 , MX(t) =

(etb − eta)/(tb− ta).

2. X ∼ Exponential(λ). f(x) = λe−λx for x ≥ 0, E[X] = 1/λ, Var(X) =
1/λ2, MX(t) = λ/(λ− t) for t < λ.

Theorem: The exponential distribution has the memoryless property (and
is the only continuous distribution with this property), i.e., for s, t > 0,
P (X > s+ t|X > s) = P (X > t).

Example: Suppose X ∼ Exp(λ = 1/100). Then

P (X > 200|X > 50) = P (X > 150) = e−λt = e−150/100. 2

3. X ∼ Gamma(α, λ).

f(x) =
λαxα−1e−λx

Γ(α)
, x ≥ 0,

where the gamma function is

Γ(α) ≡
∫ ∞

0

tα−1e−t dt.

E[X] = α/λ, Var(X) = α/λ2, MX(t) =
[
λ/(λ− t)

]α
for t < λ.

IfX1, X2, . . . , Xn
iid∼ Exp(λ), then Y ≡

∑n
i=1Xi ∼ Gamma(n, λ). The Gamma(n, λ)

is also called the Erlangn(λ). It has cdf

FY (y) = 1− e−λy
n−1∑
j=0

(λy)j

j!
, y ≥ 0.

4. X ∼ Triangular(a, b, c).

Good for modeling things with limited data — a is the smallest possible value,
b is the “most likely,” and c is the largest.

f(x) =


2(x−a)

(b−a)(c−a) if a < x ≤ b
2(c−x)

(c−b)(c−a) if b < x ≤ c
0 otherwise

.

E[X] = (a+ b+ c)/3.

87



5. X ∼ Beta(a, b). f(x) = Γ(a+b)
Γ(a)Γ(b)x

a−1(1− x)b−1 for 0 ≤ x ≤ 1 and a, b > 0.

E[X] =
a

a+ b
and Var(X) =

ab

(a+ b)2(a+ b+ 1)
.

6. X ∼ Normal(µ, σ2). Most important distribution.

f(x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, x ∈ R.

E[X] = µ, Var(X) = σ2, and MX(t) = exp(µt+ 1
2σ

2t2).

Theorem: If X ∼ Nor(µ, σ2), then aX + b ∼ Nor(aµ+ b, a2σ2).

Corollary: If X ∼ Nor(µ, σ2), then Z ≡ X−µ
σ ∼ Nor(0, 1), the standard normal

distribution, with pdf φ(z) ≡ 1√
2π
e−z

2/2 and cdf Φ(z), which is tabled. E.g.,

Φ(1.96)
.
= 0.975.

Theorem: If X1 and X2 are independent with Xi ∼ Nor(µi, σ
2
i ), i = 1, 2, then

X1 +X2 ∼ Nor(µ1 + µ2, σ
2
1 + σ2

2).

Example: Suppose X ∼ Nor(3, 4), Y ∼ Nor(4, 6), and X and Y are indepen-
dent. Then 2X − 3Y + 1 ∼ Nor(−5, 70).

2
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3.16 Limit Theorems

Corollary (of a previous theorem): If X1, . . . , Xn are iid Nor(µ, σ2), then the
sample mean X̄n ∼ Nor(µ, σ2/n).

This is a special case of the Law of Large Numbers, which says that X̄n

approximates µ well as n becomes large.

Definition: The sequence of RV’s Y1, Y2, . . . with respective cdf’s FY1(y), FY2(y), . . .
converges in distribution to the RV Y having cdf FY (y) if limn→∞ FYn(y) =

FY (y) for all y belonging to the continuity set of Y . Notation: Yn
d−→ Y .

Idea: If Yn
d−→ Y and n is large, then you ought to be able to approximate the

distribution of Yn by the limit distribution of Y .

Central Limit Theorem: If X1, X2, . . . , Xn
iid∼ f(x) with mean µ and variance

σ2, then

Zn ≡
∑n
i=1Xi − nµ√

nσ
=

√
n(X̄n − µ)

σ

d−→ Nor(0, 1).

Thus, the cdf of Zn approaches Φ(z) as n increases.

The CLT is the most-important theorem in the universe.

The CLT usually works well if the pmf/pdf is fairly symmetric and n ≥ 15.

We will eventually look at more-general versions of the CLT described above.

Example: If X1, X2, . . . , X100
iid∼ Exp(1) (so µ = σ2 = 1), then

P

(
90 ≤

100∑
i=1

Xi ≤ 110

)
= P

(
90− 100√

100
≤ Z100 ≤

110− 100√
100

)
≈ P (−1 ≤ Nor(0, 1) ≤ 1) = 0.6827.

By the way, since
∑100
i=1Xi ∼ Erlangk=100(λ = 1), we can use the cdf

(which may be tedious) or software such as Minitab to obtain the exact value

of P (90 ≤
∑100
i=1Xi ≤ 110) = 0.6835.

Wow! The CLT and exact answers match nicely! 2
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3.17 Statistics and Estimation

Definition: A statistic is a function of the observations X1, . . . , Xn, and not
explicitly dependent on any unknown parameters.

Examples of statistics: X̄ = 1
n

∑n
i=1Xi, S

2 = 1
n−1

∑n
i=1(Xi − X̄)2.

Statistics are random variables. If we take two different samples, we’d expect
to get two different values of a statistic.

A statistic is usually used to estimate some unknown parameter from the
underlying probability distribution of the Xi’s.

Examples of parameters: µ, σ2.

Let X1, . . . , Xn be iid RV’s and let T (X) ≡ T (X1, . . . , Xn) be a statistic
based on the Xi’s. Suppose we use T (X) to estimate some unknown parameter
θ. Then T (X) is called a point estimator for θ.

Examples: X̄ is usually a point estimator for the mean µ = E[Xi], and S2

is often a point estimator for the variance σ2 = Var(Xi).

It would be nice if T (X) had certain properties:

* Its expected value should equal the parameter it’s trying to estimate.

* It should have low variance.

3.18 Unbiased Estimation

Definition: T (X) is unbiased for θ if E[T (X)] = θ.

Example: /Theorem: Suppose X1, . . . , Xn are iid anything with mean µ.
Then

E[X̄] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] = E[Xi] = µ.

So X̄ is always unbiased for µ. That’s why X̄ is called the sample mean.
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Baby Example: In particular, suppose X1, . . . , Xn are iid Exp(λ). Then X̄
is unbiased for µ = E[Xi] = 1/λ.

But be careful. . . . 1/X̄ is biased for λ in this exponential case, i.e., E[1/X̄] 6=
1/E[X̄] = λ.

Example: /Theorem: Suppose X1, . . . , Xn are iid anything with mean µ and
variance σ2. Then

E[S2] = E

[∑n
i=1(Xi − X̄)2

n− 1

]
= Var(Xi) = σ2.

Thus, S2 is always unbiased for σ2. This is why S2 is called the sample
variance.

Baby Example: Suppose X1, . . . , Xn are iid Exp(λ). Then S2 is unbiased
for Var(Xi) = 1/λ2.

3.19 Distributional Results and Confidence In-
tervals

There are a number of distributions (including the normal) that come up in
statistical sampling problems. Here are a few:

Definitions: If Z1, Z2, . . . , Zk are iid Nor(0,1), then Y =
∑k
i=1 Z

2
i has the χ2

distribution with k degrees of freedom (df). Notation: Y ∼ χ2(k). Note that
E[Y ] = k and Var(Y ) = 2k.

If Z ∼ Nor(0, 1), Y ∼ χ2(k), and Z and Y are independent, then T = Z/
√
Y/k

has the Student t distribution with k df. Notation: T ∼ t(k). Note that the t(1)
is the Cauchy distribution.

If Y1 ∼ χ2(m), Y2 ∼ χ2(n), and Y1 and Y2 are independent, then F = (Y1/m)/(Y2/n)
has the F distribution with m and n df. Notation: F ∼ F (m,n).
How (and why) would one use the above facts? Because they can be used to
construct confidence intervals (CIs) for µ and σ2 under a variety of assumptions.

A 100(1−α)% two-sided CI for an unknown parameter θ is a random inter-
val [L,U ] such that P (L ≤ θ ≤ U) = 1− α.

Here are some examples / theorems, all of which assume that the Xi’s are
iid normal. . .
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Example: If σ2 is known, then a 100(1− α)% CI for µ is

X̄n − zα/2

√
σ2

n
≤ µ ≤ X̄n + zα/2

√
σ2

n
,

where zγ is the 1 − γ quantile of the standard normal distribution, i.e., zγ ≡
Φ−1(1− γ).
Example: If σ2 is unknown, then a 100(1− α)% CI for µ is

X̄n − tα/2,n−1

√
S2

n
≤ µ ≤ X̄n + tα/2,n−1

√
S2

n
,

where tγ,ν is the 1− γ quantile of the t(ν) distribution.

Example: A 100(1− α)% CI for σ2 is

(n− 1)S2

χ2
α
2 ,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α2 ,n−1

,

where χ2
γ,ν is the 1− γ quantile of the χ2(ν) distribution.

Exercise: Here are 20 residual flame times (in sec.) of treated specimens of
children’s nightwear. (Don’t worry — children were not in the nightwear when
the clothing was set on fire.)

9.85 9.93 9.75 9.77 9.67

9.87 9.67 9.94 9.85 9.75

9.83 9.92 9.74 9.99 9.88

9.95 9.95 9.93 9.92 9.89

Let’s get a 95% CI for the mean residual flame time.
After a little algebra, we get

X̄ = 9.8525 and S = 0.0965.

Further, you can use the Excel function t.inv(0.975,19) to get tα/2,n−1 =
t0.025,19 = 2.093.

Then the half-length of the CI is

H = tα/2,n−1

√
S2/n =

(2.093)(0.0965)√
20

= 0.0451.

Thus, the CI is µ ∈ X̄ ±H, or 9.8074 ≤ µ ≤ 9.8976. 2
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3.20 Workshop 7: Advanced probability and statis-
tics

1. Suppose that f(x, y) = 14xy2 for 0 < x < y2 < 1 and 0 < y < 1.

(a) Find the marginal p.d.f. of X, fX(x).

Solution:

fX(x) =

∫
R
f(x, y) dy =

∫ 1

√
x

14xy2 dy =
14

3
(x−x5/2), 0 < x < 1. 2

(b) Find the marginal p.d.f. of Y , fY (y).

Solution:

fY (y) =

∫
R
f(x, y) dx =

∫ y2

0

14xy2 dx = 7y6, 0 < y < 1. 2

(c) Find E[X].

Solution:

E[X] =

∫
R
xfX(x) dx =

∫ 1

0

14

3
(x2 − x7/2) dx =

14

27
. 2

(d) Find the conditional p.d.f. of X given Y = y, f(x|y).

Solution:

f(x|y) =
f(x, y)

fY (y)
=

2x

y4
, 0 < x < y2 < 1. 2

(e) Find the conditional expectation, E[X|y].

Solution:

E[X|y] =

∫
R
xf(x|y) dx =

∫ y2

0

2x

y4
dx =

2y2

3
. 2

(f) Find the “double” conditional expectation, E[E[X|Y ]].

Solution:

E[E[X|Y ]] =

∫
R

E[X|y]fY (y) dy =

∫ 1

0

2y2

3
7y6 dy =

14

27
. 2
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2. (Hines et al., 4–8.) Consider the probability distribution of the discrete
random vector (X,Y ), where X represents the number of orders for aspirin
in August in the neighborhood drugstore and Y represents the number of
orders in September. The joint distribution is shown in the following table.

Y \X 51 52 53 54 55

51 0.06 0.05 0.05 0.01 0.01

52 0.07 0.05 0.01 0.01 0.01

53 0.05 0.10 0.10 0.05 0.05

54 0.05 0.02 0.01 0.01 0.03

55 0.05 0.06 0.05 0.01 0.03

(a) Find the marginal distributions.

Solution: After we add up the usual stuff, we get the following
marginals:

z 51 52 53 54 55

fX(z) 0.28 0.28 0.22 0.09 0.13

fY (z) 0.18 0.15 0.35 0.12 0.20

2

(b) Find the expected sales in September, given that sales in August were
either 51, 52, 53, 54, or 55, respectively.

Solution:

E[Y |X = x] =
∑
y

yfY |X(y|x) =
1

fX(x)

∑
y

yf(x, y).

For example, we get

E[Y |X = 51] =
1

0.28

[
(51)(0.06)+(52)(0.07)+· · ·+(55)(0.05)

]
= 52.86.

Similarly, we get the following table.

x 51 52 53 54 55

E[Y |X = x] 52.86 52.96 53 53 53.46
2

3. (Hines et al., 4–9). Assume that X and Y are coded scores of two intelli-
gence tests, and the p.d.f. of (X,Y ) is given by

f(x, y) =

{
6x2y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 otherwise
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Find the expected value of the score on test #2 given the score on test #1.

Solution: Denote by X and Y the scores on tests #1 and #2, respec-
tively. We want to eventually find E[Y |X = x].

The marginal p.d.f. of X is

fX(x) =

∫
R
f(x, y) dt =

∫ 1

0

6x2y dy = 3x2, 0 ≤ x ≤ 1.

The conditional p.d.f. of Y |X = x is

f(y|x) =
f(x, y)

fX(x)
=

6x2y

3x2
= 2y, 0 ≤ y ≤ 1.

The required conditional expectation is

E[Y |X = x] =

∫
R
yf(y|x) dy =

∫ 1

0

2y2 dy = 2/3. 2

Note that this answer doesn’t depend on x! This is because X and Y are
independent (Why?) 2

4. (Hines et al., 4–31.) Given the following joint p.d.f.’s, determine whether
or not X and Y are independent.

(a) g(x, y) = 4xye−(x2+y2), x > 0, y > 0.

Solution: Since (i) there are no funny limits and (ii) you can factor

g(x, y) = (4xe−x
2

)(ye−y
2

), we see that X and Y are independent.
2

(b) f(x, y) = 3x2y−3, 0 < x < y < 1.

Solution: Funny limits imply not independent. 2

(c) f(x, y) = 6(1 + x+ y)−4, x > 0, y > 0.

Solution: Can’t factor f(x, y) = g(x)h(y) implies not independent.
2

5. (Hines et al., 4–19.) Let X and Y have joint p.d.f. f(x, y) = 2, 0 < x <
y < 1. Find the correlation between X and Y .

95



Solution: I won’t go through all of the tedious calculations, but here are
the highlights.

fX(x) =

∫ 1

x

2 dy = 2(1− x), 0 < x < 1

and

fY (y) =

∫ y

0

2 dx = 2y, 0 < y < 1.

Then you get (in the usual way)

E[X] = 1/3, Var(X) = 1/18, E[Y ] = 2/3, Var(Y ) = 1/18.

Further,

E[XY ] =

∫ ∞
−∞

∫ ∞
−∞

xyf(x, y) dx dy =

∫ 1

0

∫ y

0

2xy dx dy = 1/4.

This finally implies that

ρ =
E[XY ]− E[X]E[Y ]√

Var(X)Var(Y )
= 0.5. 2

6. (Hines et al., 4–21). Consider the data from Hines et al., 4–1, reproduced
below.

Y \X 0 1 2 3 4 5

0 11/50 4/50 2/50 1/50 1/50 1/50

1 8/50 3/50 2/50 1/50 1/50

2 4/50 3/50 2/50 1/50

3 3/50 1/50

4 1/50

Are X and Y independent? Find the correlation.

Solution: After the usual manipulations, get ρ = −0.1355. So X and Y
are not independent. 2

7. Let Var(X) = Var(Y ) = 20, Var(Z) = 30, Cov(X,Y ) = 2, Cov(X,Z) =
−3, and Cov(Y,Z) = −4. Find Corr(X,Z) and Var(X − 2Y + 5Z).

Solution:

Corr(X,Z) =
Cov(X,Z)√

Var(X)Var(Z)
= −0.1225
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and

Var(X − 2Y + 5Z) = Var(X) + 4Var(Y ) + 25Var(Z)

−2 · 2Cov(X,Y ) + 2 · 5Cov(X,Z)− 2 · 10Cov(Y,Z)

= 892. 2

8. Suppose X ∼ Exp(λ). Use the m.g.f. of X to find E[Xk].

Solution: By class notes, the m.g.f. of the Exp(λ) is MX(t) = λ
λ−t for

λ > t. Therefore,

E[Xk] =
dk

dtk
MX(t)

∣∣∣∣
t=0

=
k!

λk
,

where the final answer follows after a little elbow grease. 2.

9. (Hines et al., 4–18.) Let X and Y be two random variables such that
Y = a+ bX. Show that the moment generating function of Y is MY (t) =
eatMX(bt).

Solution:

MY (t) = E[etY ] = E[et(a+bX)] = eatE[e(bt)X ] = eatMX(bt). 2

10. (Hines et al., 5–2, binomial.) Six independent trips to the moon are
planned, each of which has estimated success probability 0.95. What’s
the probability that at most 4 will be successful?

Solution:

P (X ≤ 5) = 1−
6∑

x=5

(
6

x

)
(0.95)x(0.05)6−x

= 1− 6(0.95)5(0.05) + (0.95)6

= 1− 0.9672 = 0.0328. 2

11. (Hines et al., 5–6, binomial m.g.f.) Find the mean and variance of the
binomial using the moment generating function.
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Solution:

MX(t) = E[etX ] =

n∑
x=0

etx

(
n

x

)
px(1− p)n−x = (pet + q)n, where q = 1− p.

E[X] = M
′

X(0) = [n(pet + q)n−1pet]|t=0 = np.

E[X2] = M
′′

X(0) = np[et(n− 1)(pet + q)n−2(pet) + (pet + q)n−1et]|t=0

= (np)2 − np2 + np.

Var(X) = E[X2]− (E[X])2 = n2p2 − np2 + np− n2p2 = np(1− p) = npq. 2

12. (Hines et al., 5–9, geometric.) The probability of a successful firing of a
cruise missile is 0.95. Assuming independent tests, what’s the prob that
the first failure occurs with the fifth missile?

Solution: P (X = 5) = (0.95)4(0.05) = 0.0407. 2

13. (Hines et al., 5–30, Poisson.) Phone calls arrive at a switchboard accord-
ing to a Pois(10/hour) process. The current system can handle up to 20
calls in an hour without becoming overloaded. What’s the probability of
an overload in the next hour?

Solution:

P (X > 20) = P (X ≥ 21) =

∞∑
x=21

e−10(10)x

x!

= 1− P (X ≤ 20) = 1−
20∑
x=0

e−10(10)x

x!

= 0.002. 2

14. (Hines et al., 6–13, exponential.) The time to failure of a TV is exponen-
tial with a mean of 3 years. A company offers insurance for the first year
of usage. On what percentage of policies will the company have to pay
claims?

Solution: Let X = Life Length.

E(X) =
1

λ
= 3 ⇒ λ =

1

3
,
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so
P (X < 1) = 1− e−1/3 = 0.283.

Thus, 28.3% of policies result in a claim. 2

15. (Hines et al., 6–16, exponential.) A transistor has an exponential time-to-
failure distribution with a mean-time-to-failure of 20,000 hours. Suppose
that the transistor has already lasted 20,000 hours. What’s the probabil-
ity that it fails by 30,000 hours?

Solution:

P (X > x+s|X > x) = P (X > s) = P (X > 10000) = e−10000/20000 = 0.6064,

so P (X < 30000|X > 20000) = 0.3936. 2

16. (Hines et al., 7–1(a)–(e), normal.) Suppose Z is standard normal. Find

(a) P (0 < Z < 2).

(b) P (−1 < Z < 1).

(c) P (Z < 1.65).

(d) P (Z > −1.96).

(e) P (|Z| > 1.5).

Solution:

(a) P (0 ≤ Z ≤ 2) = Φ(2)− Φ(0) = 0.97725− 0.5 = 0.47725.

(b) P (−1 ≤ Z ≤ 1) = Φ(1)− Φ(−1) = 2Φ(1)− 1 = 0.68268.

(c) P (Z ≤ 1.65) = Φ(1.65) = 0.95053.

(d) P (Z ≥ −1.96) = Φ(1.96) = 0.9750.

(e) P (|Z| ≥ 1.5) = 2[1− Φ(1.5)] = 0.1336. 2

17. (Hines et al., 7–3(a), normal.) Find c such that Φ(c) = 0.94062.

Solution: From the back of the book, c = Φ−1(0.94062) = 1.56. 2

18. (Hines et al., 7–5(a), normal.) If X ∼ N(80, 102), find P (X < 100).

Solution: P (X ≤ 100) = Φ

(
100− 80

10

)
= Φ(2) = 0.97725. 2
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19. (Hines et al., 7–7, normal.) A manager requires job applicants to take a
test and score a 500. The test scores are normally distributed with a mean
of 485 and standard deviation of 30. What percent of applicants pass?

Solution: P (X > 500) = 1 − Φ

(
500− 485

30

)
= 1 − Φ(0.5) = 0.30854,

i.e., 30.854%. 2

20. Mathemusical Bonus: Suppose that a, k, and e are all nonzero. Use
Beatles lyrics to prove that m = t.

Solution: According to “The End”, the Beatles state that “The love you
take is equal to the love you make.” Canceling all of the similar terms and
dividing by ake, we obtain the desired result. 2

21. (Hines et al., 7-26. CLT.) 100 small bolts are packed in a box. Each
weighs an average of 1 ounce, with a standard deviation of 0.1 ounce.
Find the probability that a box weighs more than 102 ounces.

Solution: Let Xi be the weight of the ith bolt and let Y =
∑100
i=1Xi be the

weight of the box. Note that E(Xi) = 1, Var(Xi) = 0.01, i = 1, 2, . . . , 100.

Assuming that the Xi’s are independent, we use the central limit theorem
to approximate the distribution of Y ∼ Nor(100, 1). Then

P (Y > 102) = P

(
Z >

102− 100

1

)
= 1− Φ(2) = 0.02275. 2

22. (Hines et al., 7–29(a). CLT.) A production process produces items, of
which 8% are defective. A random sample of 200 items is selected every
day and the number of defective items X is counted. Using the normal
approximation to the binomial, find P (X ≤ 16).

Solution: p = 0.08, n = 200, np = 16,
√
npq = 3.84. Let’s incorporate

the “continuity correction,” and then the CLT:

P (X ≤ 16) = P (X ≤ 16.5)

≈ P
(
Z ≤ 16.5− np

√
npq

)
(where Z ∼ Nor(0, 1))

= P
(
Z ≤ 16.5− 16

3.84

)
= Φ(0.13) = 0.55172. 2
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23. (Hines et al., 7–37. lognormal.) The random variable Y = `n(X) has a
Nor(50, 25) distribution. Find the mean, variance, mode, and median of
X.

Solution: I got these answers by directly plugging into the equations
from the book. For example, in general, E[X] = exp(µ + σ2/2) = e62.5.
And similarly, Var(X) = e125(e25−1), median(X) = e50, mode(X) = e25.
2

24. Computer Exercises — Random Variate Generation

(a) Let’s start out with something easy — the Uniform(0,1) distribution.
To generate a Uniform(0,1) random variable in Excel, you simply
type = RAND(). Copy an entire column of 100 of these guys and
make a histogram. If things don’t look particularly uniform, try the
same exercise for 1000 observations. By the way, you can use the
<F9> key to get an independent realization of your experiment.

(b) It’s very easy to generate an Exponential(1) random variable in Excel.
Just use

= −LN(RAND())

(This result uses the inverse transform method from Module 2.6.)
Generate 1000 or so of these guys and make a nice histogram.

(c) In Excel, you can generate a Normal(0,1) random variable using

= NORMINV(RAND(), 0, 1) (inverse transform method)

or

= SQRT(−2 ∗ LN(RAND())) ∗ COS(2 ∗ PI() ∗ RAND()) (Box–Muller method)

Generate a bunch of normals using one of the above equations and
make a histogram.

(d) Triangular distribution. Generate two columns of Uniform(0,1)’s. In
the third column, add up the respective entries from the previous two
columns, e.g., C1 = A1 + B1, etc. Make a histogram of the third col-
umn. Guess what you get?

Solution: You get a triangular p.d.f. Surprise! 2
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(e) Normal distribution from the Central Limit Theorem. Generate
twelve columns of Uniform(0,1)’s. In the 13th column, add up the
respective entries from the previous 12 columns. Make a histogram
of the 13th column. Guess what you get this time?

Solution: You get what looks like a normal p.d.f. The CLT works!
2

(f) Cauchy distribution. It turns out that you can generate a Cauchy
random variable as the ratio of two i.i.d. Nor(0,1)’s. Make a his-
togram and comment. Does the CLT work for this distribution?

Solution: You get a mess that has extreme values. If you zoom in
towards x = 0, it looks vaguely normal — but the tails are way too
fat to actually be normal. If you try to apply the CLT, it fails — in
fact, you get another Cauchy. The reason for the CLT failure is that
the variance of the Cauchy is infinite, thus violating one of the CLT
assumptions. 2

Most of the following problems are from Hines, et al.

10–40(a). The life in hours of a 75-W light bulb is known to be approximately
normally distributed, with a standard deviation of σ = 25 hours. A random
sample of 20 bulbs has a mean life of x̄ = 1014 hours. Construct a 95% two-
sided confidence interval on the mean life.

Solution: Since σ is known, we use

x̄− zα/2
σ√
n
≤ µ ≤ x̄+ zα/2

σ√
n
.

Since z0.025 = 1.96, we have 1003.04 ≤ µ ≤ 1024.96. 2

10–42. Suppose that in Exercise 10–40 we wanted to be 95% confident that the
error in estimating the mean life is less than 5 hours. What sample size should
be used?

Solution: n = (zα/2σ/ε)
2 = [(1.96)25/5]2 = 96.04 ' 97. 2

10–46. The burning rates of two different solid-fuel rocket propellants are be-
ing studied. It is known that both propellants have approximately the same
standard deviation of burning rate, σ1 = σ2 = 3 cm/s. Two random samples
of n1 = 20 and n2 = 20 specimens are tested, and the sample mean burning
rates are x̄1 = 18 and x̄2 = 24 cm/s. Construct a 99% confidence interval on
the mean difference in burning rate.
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Solution: Since both variances are known, we use

x̄2 − x̄1 − zα/2

√
σ2

1

n1
+
σ2

2

n2
≤ µ1 − µ2 ≤ x̄2 − x̄1 + zα/2

√
σ2

1

n1
+
σ2

2

n2
.

Since z0.005 = 2.576, we have 3.56 ≤ µ2 − µ1 ≤ 8.44. 2

10–48(a). The compressive strength of concrete is being tested by a civil
engineer. He tests 16 specimens and obtains the following data:

2216 2237 2249 2204

2225 2301 2281 2263

2318 2255 2275 2295

2250 2238 2300 2217

Construct a 95% two-sided confidence interval on the mean strength.

Solution: Since σ is unknown, we use

x̄− tα/2,n−1
s√
n
≤ µ ≤ x̄+ tα/2,n−1

s√
n
.

We can easily calculate

x̄ = 2257.75 and s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 = (34.51)2.

Since t0.025,15 = 2.13, we have 2239.4 ≤ µ ≤ 2276.1. 2

10–49. An article in Annual Reviews Material Research (2001, p. 291) presents
bond strengths for various energetic materials (explosives, propellants, and py-
rotechnics). Bond strengths for 15 such materials are shown below. Construct
a two-sided 95% confidence interval on the mean bond strength.

323 312 300 284 283

261 207 183 180 179

174 167 167 157 120

Solution: Since σ is unknown, we use

x̄− tα/2,n−1
s√
n
≤ µ ≤ x̄+ tα/2,n−1

s√
n
.

We can easily calculate

x̄ = 219.80 and s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 = (66.41)2.
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Since t0.025,14 = 2.14, we have 183.1 ≤ µ ≤ 256.5. 2

10–50. The wall thickness of 25 glass 2-liter bottles was measured by a quality-
control engineer. The sample mean was x̄ = 4.05 mm, and the sample standard
deviation was s = 0.08 mm. Find a 90% lower confidence interval on the mean
wall thickness.

Solution: The confidence interval will have the form

x̄− tα,n−1
s√
n
≤ µ

Since t0.10,24 = 1.32, we have 4.05 − t0.10,24(0.08/
√

25) ≤ µ. In other words,
4.029 ≤ µ. 2

10–56(a). Random samples of size 20 were drawn from two independent nor-
mal populations. The sample means and standard deviations were x̄1 = 22.0,
s1 = 1.8, x̄2 = 21.5, and s2 = 1.5. Assuming that σ2

1 = σ2
2 , find a 95% two-sided

confidence interval on µ1 − µ2.

Solution: Since both variances are unknown but assumed equal, we use

x̄1−x̄2−tα/2,n1+n2−2 sp

√
1

n1
+

1

n2
≤ µ1−µ2 ≤ x̄1−x̄2+tα/2,n1+n2−2 sp

√
1

n1
+

1

n2
,

where n1 = n2 = 20 and the pooled variance is

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
= 2.745.

Since t0.025,38 = 2.024, we have −0.561 ≤ µ1 − µ2 ≤ 1.561. 2

10–57. The diameter of steel rods manufactured on two different extrusion
machines is being investigated. Two random samples of sizes n1 = 15 and
n2 = 18 are selected, and the sample means and sample variances are x̄1 = 8.73,
s2

1 = 0.30, x̄2 = 8.68, and s2
2 = 0.34. Assuming that σ2

1 = σ2
2 , construct a 95%

two-sided confidence interval on the difference in mean rod diameter.

Solution: Using the same equations as in the solution to Question 10–56(a),
we obtain −0.355 ≤ µ1 − µ2 ≤ 0.455. (Note that the answer in the back of the
book was wrong.) 2

10–59(a). Consider the data in Exercise 10–48. Construct a 95% two-sided
confidence interval on σ2.

Solution: The desired confidence interval is of the form

(n− 1)s2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1)s2

χ2
1−α/2,n−1

.
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From the solution to Exercise 10–48, we know that s2 = (34.51)2. Further,
χ2

0.975,15 = 6.26 and χ2
0.025,15 = 27.49. Thus, the c.i. is 649.84 ≤ σ2 ≤ 2853.69.

2

10–63. Consider the data in Exercise 10–56. Construct a 95% two-sided confi-
dence interval on the ratio of the population variances σ2

1/σ
2
2 .

Solution: The desired confidence interval is of the form

s2
1

s2
2

1

Fα/2,n1−1,n2−1
≤ σ2

1

σ2
2

≤ s2
1

s2
2

Fα/2,n2−1,n1−1.

In other words, we want

(1.8)2

(1.5)2

1

F0.025,19,19
≤ σ2

1

σ2
2

≤ (1.8)2

(1.5)2
F0.025,19,19.

Since F0.025,19,19 = 2.526, we obtain the c.i. 0.57 ≤ σ2
1/σ

2
2 ≤ 3.64. 2

Bernoulli Question. A pollster asked a sample of 2000 people whether or not
they were in favor of a particular proposal. Exactly 1200 people answered yes.
Find a 95% confidence interval for the percentage of the population in favor of
the proposal.

Solution: We are looking for a c.i. for the proportion p of favorable responses,
i.e., the Bernnoulli parameter. Thus, the solution is of the form

x̄− zα/2

√
x̄(1− x̄)

n
≤ p ≤ x̄+ zα/2

√
x̄(1− x̄)

n
.

That is,

0.6− 1.96

√
0.6(0.4)

2000
≤ p ≤ 0.6 + 1.96

√
0.6(0.4)

2000
,

or 0.579 ≤ p ≤ 0.621. 2

BONUS: What do Stiller and Meara, Lou Reed, Suzanne Pleshette, and 44
have in common?

Solution: Syracuse University. GO ORANGE! 2
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