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Topics and Objectives

Topics

We will cover these topics in this section.

1. The definition and computation of a determinant

2. The determinant of triangular matrices

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Compute determinants of n⇥ n matrices using a cofactor expansion.

2. Apply theorems to compute determinants of matrices that have
particular structures.
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A Definition of the Determinant

Suppose A is n⇥ n and has elements aij .

1. If n = 1, A = [a11], and has determinant detA = a11.

2. Inductive case: for n > 1,

detA = a11 detA11 � a12 detA12 + · · ·+ (�1)1+na1n detA1n

where Aij is the submatrix obtained by eliminating row i and
column j of A.

Example

A =

0

BBBB@

1

CCCCA
) A2,3 =

0

BB@

1

CCA
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Example 1

Compute det


a b
c d

�
.
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Example 2

Compute det

2

4
1 �5 0
2 4 �1
0 2 0

3

5 =

������

1 �5 0
2 4 �1
0 2 0

������
.
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Cofactors

Cofactors give us a more convenient notation for determinants.

The (i, j) cofactor of an n⇥ n matrix A is

Cij = (�1)i+j detAij

Definition: Cofactor

The pattern for the negative signs is

0

BBBBB@

+ � + � . . .
� + � + . . .
+ � + � . . .
� + � + . . .
...

...
...

...

1

CCCCCA
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The determinant of a matrix A can be computed down any
row or column of the matrix. For instance, down the jth

column, the determinant is

detA = a1jC1j + a2jC2j + · · ·+ anjCnj .

Theorem

This gives us a way to calculate determinants more e�ciently.
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Example 3

Compute the determinant of

2

664

5 4 3 2
0 1 2 0
0 �1 1 0
0 1 1 3

3

775.
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Triangular Matrices

If A is a triangular matrix then

detA = a11a22a33 · · · ann.

Theorem

Example 4

Compute the determinant of the matrix. Empty elements are zero.

2

666666664

2 1
2 1

2 1
2 1

2 1
2 1

2

3

777777775
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Computational E�ciency

Note that computation of a co-factor expansion for an N ⇥N matrix
requires roughly N ! multiplications.

• A 10⇥ 10 matrix requires roughly 10! = 3.6 million multiplications

• A 20⇥ 20 matrix requires 20! ⇡ 2.4⇥ 1018 multiplications

This doesn’t mean that determinants are not useful.

• We will explore other methods that further the e�ciency of their
calculation.

• Determinants are very useful in multivariable calculus for solving
certain integration problems.
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Section 3.2 : Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

“A problem isn’t finished just because you’ve found the right answer.”
- Yōko Ogawa

We have a method for computing determinants, but without some of the
strategies we explore in this section, the algorithm can be very ine�cient.
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Topics and Objectives

Topics

We will cover these topics in this section.

• The relationships between row reductions, the invertibility of a
matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply properties of determinants (related to row reductions,
transpose, and matrix products) to compute determinants.

2. Use determinants to determine whether a square matrix is invertible.
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Row Operations

• We saw how determinants are di�cult or impossible to compute
with a cofactor expansion for large N .

• Row operations give us a more e�cient way to compute
determinants.

Let A be a square matrix.
1. If a multiple of a row of A is added to another row to

produce B, then detB = detA.

2. If two rows are interchanged to produce B, then
detB = � detA.

3. If one row of A is multiplied by a scalar k to produce
B, then detB = k detA.

Theorem: Row Operations and the Determinant
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Example 1 Compute

������

1 �4 2
�2 8 �9
�1 7 0

������
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Invertibility

Important practical implication: If A is reduced to echelon form, by r
interchanges of rows and columns, then

|A| =
(
(�1)r ⇥ (product of pivots), when A is invertible

0, when A is singular.
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Example 2 Compute the determinant
��������

0 1 2 �1
2 5 �7 3
0 3 6 2

�2 �5 4 2

��������

Section 3.2 Slide 187



Properties of the Determinant

For any square matrices A and B, we can show the following.

1. detA = detAT .

2. A is invertible if and only if detA 6= 0.

3. det(AB) = detA · detB.
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Additional Example (if time permits)

Use a determinant to find all values of � such that matrix C is not
invertible.

C =

0

@
5 0 0
0 0 1
1 1 0

1

A� �I3
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Additional Example (if time permits)

Determine the value of

detA = det

0

B@

0

@
0 2 0
1 1 2
1 1 3

1

A
8
1

CA .
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Section 3.3 : Volume, Linear Transformations

Chapter 3 : Determinants
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Relationships between area, volume, determinants, and linear
transformations.

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Use determinants to compute the area of a parallelogram, or the
volume of a parallelepiped, possibly under a given linear
transformation.

Students are not expected to be familiar with Cramer’s rule.

Section 3.3 Slide 192

Determinants, Area and Volume

In R2, determinants give us the area of a parallelogram.
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Determinants as Area, or Volume

The volume of the parallelpiped spanned by the columns of
an n⇥ n matrix A is |detA|.

Theorem

Key Geometric Fact (which works in any dimension). The area of
the parallelogram spanned by two vectors ~a,~b is equal to the area
spanned by ~a, c~a+~b, for any scalar c.
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Any 3⇥ 3 matrix A can be transformed into a diagonal matrix using
column operations that do not change |det(A)|.
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Example 1

Calculate the area of the parallelogram determined by the points
(�2,�2), (0, 3), (4,�1), (6, 4)

Section 3.3 Slide 196

Linear Transformations

If TA : Rn 7! Rn, and S is some parallelogram in Rn, then

volume (TA(S)) = |det(A)| · volume(S)

Theorem

An example that applies this theorem is given in this week’s worksheets.
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Section 4.9 : Applications to Markov Chains

Chapter 4 : Vector Spaces

Math 1554 Linear Algebra
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Markov chains

2. Steady-state vectors

3. Convergence

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Construct stochastic matrices and probability vectors.

2. Model and solve real-world problems using Markov chains (e.g. -
find a steady-state vector for a Markov chain)

3. Determine whether a stochastic matrix is regular.
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Example 1

• A small town has two libraries, A and B.

• After 1 month, among the books checked out of A,
I 80% returned to A
I 20% returned to B

• After 1 month, among the books checked out of B,
I 30% returned to A
I 70% returned to B

If both libraries have 1000 books today, how many books does each
library have after 1 month? After one year? After n months? A place to
simulate this is http://setosa.io/markov/index.html

A B

0.2

0.8

0.3

0.7
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Example 1 Continued

The books are equally divided by between the two branches, denoted by

~x0 =


.5
.5

�
. What is the distribution after 1 month, call it ~x1? After two

months?

After k months, the distribution is ~xk, which is what in terms of ~x0?
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Markov Chains

A few definitions:

• A probability vector is a vector, ~x, with non-negative elements that
sum to 1.

• A stochastic matrix is a square matrix, P , whose columns are
probability vectors.

• A Markov chain is a sequence of probability vectors ~xk, and a
stochastic matrix P , such that:

~xk+1 = P~xk, k = 0, 1, 2, . . .

• A steady-state vector for P is a vector ~q such that P~q = ~q.
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Example 2

Determine a steady-state vector for the stochastic matrix

✓
.8 .3
.2 .7

◆
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Convergence

We often want to know what happens to a process,

~xk+1 = P~xk, k = 0, 1, 2, . . .

as k ! 1.

Definition: a stochastic matrix P is regular if there is some k such that
P k only contains strictly positive entries.

If P is a regular stochastic matrix, then P has a unique steady-
state vector ~q, and ~xk+1 = P~xk converges to ~q as k ! 1.

Theorem
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Stochastic Vectors in the Plane

The stochastic vectors in the plane are the line segment below, and a
stochastic matrix maps stochastic vectors to themselves. Iterates P k~x0

converge to the steady state.

1

1

~x1

Steady State Vector

~x0

~x1

~x2

~x3

P k �!
⇥
~x1 ~x1

⇤

Section 4.9 Slide 205

Example 3

A car rental company has 3 rental locations, A, B, and C. Cars can be
returned at any location. The table below gives the pattern of rental and
returns for a given week.

rented from
A B C

returned to
A .8 .1 .2
B .2 .6 .3
C .0 .3 .5

There are 10 cars at each location today.

a) Construct a stochastic matrix, P , for this problem.

b) What happens to the distribution of cars after a long time? You may
assume that P is regular.
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A B

C

.2

.8

.1

.6

.3
.2

.5

.3

P =

2

4
.8 .1 .2
.2 .6 .3
.0 .3 .5

3

5

Section 4.9 Slide 207



The Stochastic vectors in R3, are vectors

2

4
s
t

1� s� t

3

5, where

0  s, t  1 and s+ t  1. P ‘contracts’ stochastic vectors to x1.

(1, 0, 0)

(0, 1, 0)(0, 0, 1)

x1
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Section 5.1 : Eigenvectors and Eigenvalues

Chapter 5 : Eigenvalues and Eigenvectors
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Topics and Objectives

Topics

We will cover these topics in this section.

1. Eigenvectors, eigenvalues, eigenspaces

2. Eigenvalue theorems

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Verify that a given vector is an eigenvector of a matrix.

2. Verify that a scalar is an eigenvalue of a matrix.

3. Construct an eigenspace for a matrix.

4. Apply theorems related to eigenvalues (for example, to characterize
the invertibility of a matrix).
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Eigenvectors and Eigenvalues

If A 2 Rn⇥n, and there is a ~v 6= ~0 in Rn, and

A~v = �~v

then ~v is an eigenvector for A, and � 2 C is the corresponding
eigenvalue.

Note that

• We will only consider square matrices.

• If � 2 R, then
I when � > 0, A~v and ~v point in the same direction
I when � < 0, A~v and ~v point in opposite directions

• Even when all entries of A and ~v are real, � can be complex (a
rotation of the plane has no real eigenvalues.)

• We explore complex eigenvalues in Section 5.5.
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Example 1

Which of the following are eigenvectors of A =

✓
1 1
1 1

◆
? What are the

corresponding eigenvalues?

a) ~v1 =

✓
1
1

◆

b) ~v2 =

✓
1
�1

◆

c) ~v3 =

✓
0
0

◆
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Example 2

Confirm that � = 3 is an eigenvalue of A =

✓
2 �4
�1 �1

◆
.
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Eigenspace

Suppose A 2 Rn⇥n. The eigenvectors for a given � span a
subspace of Rn called the �-eigenspace of A.

Definition

Note: the �-eigenspace for matrix A is Nul(A� �I).

Example 3

Construct a basis for the eigenspaces for the matrix whose eigenvalues
are given, and sketch the eigenvectors.

✓
5 �6
3 �4

◆
, � = �1, 2
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Theorems

Proofs for the following theorems are stated in Section 5.1. If time
permits, we will explain or prove all/most of these theorems in lecture.

1. The diagonal elements of a triangular matrix are its eigenvalues.

2. A invertible , 0 is not an eigenvalue of A.

3. If ~v1,~v2, . . . ,~vk are eigenvectors that correspond to distinct
eigenvalues, then ~v1,~v2, . . . ,~vk are linearly independent.
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Warning!

We can’t determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Example: suppose A =


1 1
1 1

�
. The eigenvalues are � = 2, 0, because

A


1
1

�
=


1 1
1 1

� 
1
1

�
=

A


1
�1

�
=


1 1
1 1

� 
1
�1

�
=

• But the reduced echelon form of A is:

• The reduced echelon form is triangular, and its eigenvalues are:
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Additional Resource

3Blue1Brown

A beautiful, animated, and visual explanation of eigenvalues and
eigenvectors.

http://bit.ly/2lXyJPg
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Section 5.2 : The Characteristic Equation

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra
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Topics and Objectives

Topics

We will cover these topics in this section.

1. The characteristic polynomial of a matrix

2. Algebraic and geometric multiplicity of eigenvalues

3. Similar matrices

Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Construct the characteristic polynomial of a matrix and use it to
identify eigenvalues and their multiplicities.

2. Characterize the long-term behaviour of dynamical systems using
eigenvalue decompositions.

Section 5.2 Slide 219



The Characteristic Polynomial

Recall:

� is an eigenvalue of A , (A� �I) is not

Therefore, to calculate the eigenvalues of A, we can solve

det(A� �I) =

The quantity det(A� �I) is the characteristic polynomial of A.

The quantity det(A� �I) = 0 is the characteristic equation of A.

The roots of the characteristic polynomial are the of A.
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Example

The characteristic polynomial of A =

✓
5 2
2 1

◆
is:

So the eigenvalues of A are:
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Characteristic Polynomial of 2⇥ 2 Matrices

Express the characteristic equation of

M =

✓
a b
c d

◆

in terms of its determinant. What is the equation when M is singular?
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Algebraic Multiplicity

The algebraic multiplicity of an eigenvalue is its multiplicity
as a root of the characteristic polynomial.

Definition

Example

Compute the algebraic multiplicities of the eigenvalues for the matrix
0

BB@

1 0 0 0
0 0 0 0
0 0 �1 0
0 0 0 0

1

CCA
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Geometric Multiplicity

The geometric multiplicity of an eigenvalue � is the dimension
of Null(A� �I).

Definition

1. Geometric multiplicity is always at least 1. It can be smaller than
algebraic multiplicity.

2. Here is the basic example:
✓
0 1
0 0

◆

� = 0 is the only eigenvalue. Its algebraic multiplicity is 2, but the
geometric multiplicity is 1.
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Example

Give an example of a 4⇥ 4 matrix with � = 0 the only eigenvalue, but
the geometric multiplicity of � = 0 is one.
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Recall: Long-Term Behavior of Markov Chains

Recall:

• We often want to know what happens to a Markov Chain

~xk+1 = P~xk, k = 0, 1, 2, . . .

as k ! 1.

• If P is regular, then there is a

Now lets ask:

• If we don’t know whether P is regular, what else might we do to
describe the long-term behavior of the system?

• What can eigenvalues tell us about the behavior of these systems?
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Example: Eigenvalues and Markov Chains

Note: the textbook has a similar example that you can review.

Consider the Markov Chain:

~xk+1 = P~xk =

✓
0.6 0.4
0.4 0.6

◆
~xk, k = 0, 1, 2, 3, . . . , ~x0 =

✓
1
0

◆

This system can be represented schematically with two nodes, A and B:

A B

0.4

0.6

0.4

0.6

Goal: use eigenvalues to describe the long-term behavior of our system.
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What are the eigenvalues of P?

What are the corresponding eigenvectors of P?
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Use the eigenvalues and eigenvectors of P to analyze the long-term
behaviour of the system. In other words, determine what ~xk tends to as
k ! 1.
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Similar Matrices

Two n⇥n matrices A and B are similar if there is a matrix P so that
A = PBP�1.

Definition

If A and B similar, then they have the same characteristic polynomial.

Theorem

If time permits, we will explain or prove this theorem in lecture. Note:

• Our textbook introduces similar matrices in Section 5.2, but doesn’t
have exercises on this concept until 5.3.

• Two matrices, A and B, do not need to be similar to have the same
eigenvalues. For example,

✓
0 1
0 0

◆
and

✓
0 0
0 0

◆
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Additional Examples (if time permits)

1. True or false.

a) If A is similar to the identity matrix, then A is equal to the identity
matrix.

b) A row replacement operation on a matrix does not change its
eigenvalues.

2. For what values of k does the matrix have one real eigenvalue with
algebraic multiplicity 2?

✓
�3 k
2 �6

◆

Section 5.2 Slide 231


