Section 3.1 : Introduction to Determinants

Chapter 3 : Determinants Math 1554 Linear Algebra

Topics and Objectives

Topics

- We will cover these topics in this section.
- $1. \ \mbox{The definition}$ and computation of a determinant
- $2. \ \ {\mbox{The determinant of triangular matrices}}$

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Compute determinants of $n\times n$ matrices using a cofactor expansion.
- 2. Apply theorems to compute determinants of matrices that have particular structures.

Section 3.1 Slide 172

Section 3.1 Slide 173

A Definition of the Determinant

Suppose A is $n \times n$ and has elements a_{ij} .

- 1. If n = 1, $A = [a_{11}]$, and has determinant det $A = a_{11}$.
- 2. Inductive case: for n > 1,

 $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$

where A_{ij} is the submatrix obtained by eliminating row i and column $j \mbox{ of } A.$

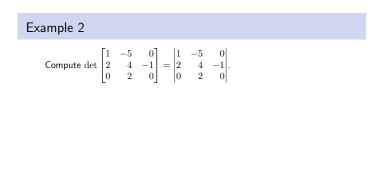
Example

A =	(•	٠	•	•	•)		(-		~	
	•	•	•	•	•	$\Rightarrow A_{2,3} =$	(•	•	•	•)
4 —		~	_	_	_	$\Rightarrow A_{2,3} =$	•	0	0	•
A -	•	0	0	•	•	\rightarrow $A_{2,3}$ –		0	0	•
	•	0	0	0	0			~	_	
	•	0	0	•	•)			U	•	•/

Section 3.1 Slide 174

Example 1

Section 3.1 Slide 175



Cofactors

Cofactors give us a more convenient notation for determinants.

The (i, j) cofactor of an $n \times n$ matrix A is $C_{ij} = (-1)^{i+j} \det A_{ij}$

The pattern for the negative signs is

(+ - + -	_	$^+$	_)
-	$^+$	_	$^+$	
+	_	+	_	
-	+	_	+	
	÷	÷	÷)

Section 3.1 Slide 177

Section 3.1 Slide 176

Theorem The determinant of a matrix A can be computed down any row or column of the matrix. For instance, down the j^{th} column, the determinant is

 $\det A = a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}.$

This gives us a way to calculate determinants more efficiently.

Example 3

Compute the determinant of	$\begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$4 \\ 1 \\ -1 \\ 1$	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \end{array} $	$\begin{bmatrix} 2\\0\\0\\3 \end{bmatrix}$	
	0	1	1	3	

Section 3.1 Slide 179

Triangular Matrices

Theorem	
If A is a t	riangular matrix then
	$\det A = a_{11}a_{22}a_{33}\cdots a_{nn}.$

Example 4

Compute the determinant of the matrix. Empty elements are zero.

Section 3.1 Slide 180

Computational Efficiency

Note that computation of a co-factor expansion for an $N\times N$ matrix requires roughly N! multiplications.

- A 10×10 matrix requires roughly 10!=3.6 million multiplications A 20×20 matrix requires $20!\approx2.4\times10^{18}$ multiplications
- This doesn't mean that determinants are not useful.
 - We will explore other methods that further the efficiency of their calculation.
- Determinants are very useful in multivariable calculus for solving certain integration problems.

Section 3.1 Slide 181

Section 3.2 : Properties of the Determinant

Chapter 3 : Determinants

Math 1554 Linear Algebra

"A problem isn't finished just because you've found the right answer." - Yōko Ogawa

We have a method for computing determinants, but without some of the strategies we explore in this section, the algorithm can be very inefficient.

Topics and Objectives

Topics

- We will cover these topics in this section.
 - The relationships between row reductions, the invertibility of a matrix, and determinants.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Apply properties of determinants (related to row reductions, transpose, and matrix products) to compute determinants.
- 2. Use determinants to determine whether a square matrix is invertible.

Section 3.2 Slide 183

Row Operations

	1	-4	2
Example 1 Compute	-2	8	-9
	-1	7	0

- $\bullet\,$ We saw how determinants are difficult or impossible to compute with a cofactor expansion for large N.
- Row operations give us a more efficient way to compute determinants.

- Theorem: Row Operations and the Determinant

- Let A be a square matrix. 1. If a multiple of a row of A is added to another row to produce B, then $\det B = \det A$.
- If two rows are interchanged to produce B, then det B = det A.
- 3. If one row of A is multiplied by a scalar k to produce B, then $\det B=k\det A.$

Section 3.2 Slide 184

Section 3.2 Slide 185

Invertibility

Important practical implication: If \boldsymbol{A} is reduced to echelon form, by \boldsymbol{r} interchanges of rows and columns, then

$$|A| = \begin{cases} (-1)^r \times \text{(product of pivots)}, & \text{when } A \text{ is invertible} \\ 0, & \text{when } A \text{ is singular}. \end{cases}$$

Example 2 Compute the determinant

0	1	2	-1
2	5	-7	3
0	3	6	2
-2	-5	4	2

Section 3.2 Slide 186

Section 3.2 Slide 187

Properties of the Determinant

For any square matrices A and B, we can show the following.

- 1. det $A = \det A^T$.
- 2. A is invertible if and only if $\det A \neq 0$.
- 3. $\det(AB) = \det A \cdot \det B$.

Additional Example (if time permits)

Use a determinant to find all values of λ such that matrix C is not invertible.

$$C = \begin{pmatrix} 5 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} - \lambda I_3$$

Section 3.2 Slide 188

Section 3.2 Slide 189

Additional Example (if time permits)

Determine the value of

$$\det A = \det \left(\begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix}^8 \right).$$

Section 3.3 : Volume, Linear Transformations

Chapter 3 : Determinants Math 1554 Linear Algebra

Section 3.3 Slide 191

Topics and Objectives

Topics

- We will cover these topics in this section.
- 1. Relationships between area, volume, determinants, and linear transformations.

Objectives

For the topics covered in this section, students are expected to be able to do the following.

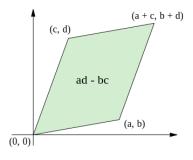
1. Use determinants to compute the area of a parallelogram, or the volume of a parallelepiped, possibly under a given linear transformation.

Students are not expected to be familiar with Cramer's rule.

Section 3.3 Slide 192

Determinants, Area and Volume

In \mathbb{R}^2 , determinants give us the area of a parallelogram.

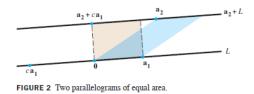


Section 3.3 Slide 193

Determinants as Area, or Volume

The volume of the parallelpiped spanned by the columns of an $n \times n$ matrix A is $|\det A|$.

Key Geometric Fact (which works in any dimension). The area of the parallelogram spanned by two vectors \vec{a}, \vec{b} is equal to the area spanned by $\vec{a}, c\vec{a} + \vec{b}$, for any scalar c.



Any 3×3 matrix A can be transformed into a diagonal matrix using column operations that do not change $|{\rm det}(A)|.$

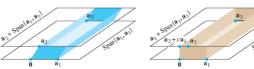
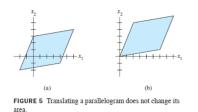


FIGURE 4 Two parallelepipeds of equal volume.

Section 3.3 Slide 195

Example 1

Calculate the area of the parallelogram determined by the points (-2,-2), (0,3), (4,-1), (6,4)



Linear Transformations

- Theorem	
	${}^{*}\mapsto \mathbb{R}^{n},$ and S is some parallelogram in $\mathbb{R}^{n},$ then
v	olume $(T_A(S)) = \det(A) \cdot \text{volume}(S)$

An example that applies this theorem is given in this week's worksheets.

Section 3.3 Slide 196

Section 3.3 Slide 197

Section 4.9 : Applications to Markov Chains

Chapter 4 : Vector Spaces

Math 1554 Linear Algebra

Topics and Objectives

Topics

- We will cover these topics in this section.
- 1. Markov chains
- 2. Steady-state vectors
- 3. Convergence

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Construct stochastic matrices and probability vectors.
- 2. Model and solve real-world problems using Markov chains (e.g. find a steady-state vector for a Markov chain)
- 3. Determine whether a stochastic matrix is regular.

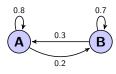
Section 4.9 Slide 198

Section 4.9 Slide 199

Example 1

- A small town has two libraries, A and B.
- After 1 month, among the books checked out of A,
 ▶ 80% returned to A
 - $\blacktriangleright~$ 20% returned to B
- After 1 month, among the books checked out of ${\cal B},$
 - \blacktriangleright 30% returned to A
 - $\blacktriangleright~$ 70% returned to B

If both libraries have 1000 books today, how many books does each library have after 1 month? After one year? After n months? A place to simulate this is http://setosa.io/markov/index.html



Section 4.9 Slide 200

Example 1 Continued

The books are equally divided by between the two branches, denoted by $\vec{x}_0 = \begin{bmatrix} .5 \\ .5 \end{bmatrix}$. What is the distribution after 1 month, call it \vec{x}_1 ? After two months?

After k months, the distribution is \vec{x}_k , which is what in terms of \vec{x}_0 ?

Section 4.9 Slide 201

Markov Chains

- A few definitions:
 - A **probability vector** is a vector, \vec{x} , with non-negative elements that sum to 1.
 - A stochastic matrix is a square matrix, *P*, whose columns are probability vectors.
 - A **Markov chain** is a sequence of probability vectors \vec{x}_k , and a stochastic matrix P, such that:

 $\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$

• A steady-state vector for P is a vector \vec{q} such that $P\vec{q} = \vec{q}$.

Example 2

Determine a steady-state vector for the stochastic matrix

Section 4.9 Slide 202

Section 4.9 Slide 203

Convergence

We often want to know what happens to a process,

 $\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$

 $\text{ as }k\to\infty.$

Section 4.9 Slide 204

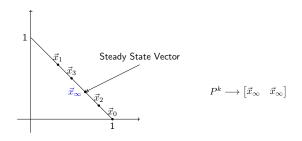
Definition: a stochastic matrix P is **regular** if there is some k such that P^k only contains strictly positive entries.

Theorem

If P is a regular stochastic matrix, then P has a unique steady-state vector \vec{q} , and $\vec{x}_{k+1}=P\vec{x}_k$ converges to \vec{q} as $k\to\infty.$

Stochastic Vectors in the Plane

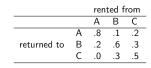
The stochastic vectors in the plane are the line segment below, and a stochastic matrix maps stochastic vectors to themselves. Iterates $P^k\vec{x}_0$ converge to the steady state.



Section 4.9 Slide 205

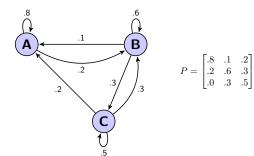
Example 3

A car rental company has 3 rental locations, A, B, and C. Cars can be returned at any location. The table below gives the pattern of rental and returns for a given week.



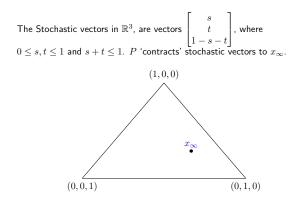
There are 10 cars at each location today.

- a) Construct a stochastic matrix, P, for this problem.
- b) What happens to the distribution of cars after a long time? You may assume that ${\cal P}$ is regular.



Section 4.9 Slide 206

Section 4.9 Slide 207



Section 5.1 : Eigenvectors and Eigenvalues

Chapter 5 : Eigenvalues and Eigenvectors Math 1554 Linear Algebra

Section 4.9 Slide 208

Section 5.1 Slide 209

Topics and Objectives

Topics

- We will cover these topics in this section.
- 1. Eigenvectors, eigenvalues, eigenspaces
- 2. Eigenvalue theorems

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Verify that a given vector is an eigenvector of a matrix.
- 2. Verify that a scalar is an eigenvalue of a matrix.
- 3. Construct an eigenspace for a matrix.
- 4. Apply theorems related to eigenvalues (for example, to characterize the invertibility of a matrix).

Eigenvectors and Eigenvalues

If $A \in \mathbb{R}^{n imes n}$, and there is a $ec{v} \neq ec{0}$ in \mathbb{R}^n , and

 $A\vec{v}=\lambda\vec{v}$

then \vec{v} is an eigenvector for A, and $\lambda\in\mathbb{C}$ is the corresponding eigenvalue.

Note that

- We will only consider square matrices.
- If $\lambda \in \mathbb{R}$, then
 - $\label{eq:linear_states} \begin{array}{l} \flat \quad \mbox{when } \lambda > 0, \ A \vec{v} \ \mbox{and } \vec{v} \ \mbox{point in the same direction} \\ \flat \quad \mbox{when } \lambda < 0, \ A \vec{v} \ \mbox{and } \vec{v} \ \mbox{point in opposite directions} \end{array}$
- Even when all entries of A and \vec{v} are real, λ can be complex (a rotation of the plane has no real eigenvalues.)
- We explore complex eigenvalues in Section 5.5.

Section 5.1 Slide 211

Example 1

Which of the following are eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$? What are the corresponding eigenvalues?

a)
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b)
$$\vec{v}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

c) $\vec{v}_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Section 5.1 Slide 212

Example 2

Confirm that $\lambda = 3$ is an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$.

Section 5.1 Slide 213

Eigenspace

Definition –

Suppose $A\in\mathbb{R}^{n\times n}.$ The eigenvectors for a given λ span a subspace of \mathbb{R}^n called the $\lambda\text{-eigenspace}$ of A.

Note: the λ -eigenspace for matrix A is $Nul(A - \lambda I)$.

Example 3

Construct a basis for the eigenspaces for the matrix whose eigenvalues are given, and sketch the eigenvectors.

$$\begin{pmatrix} 5 & -6 \\ 3 & -4 \end{pmatrix}, \quad \lambda = -1, 2$$

Theorems

Proofs for the following theorems are stated in Section 5.1. If time permits, we will explain or prove all/most of these theorems in lecture.

- $1. \ \mbox{The diagonal elements of a triangular matrix are its eigenvalues.}$
- 2. A invertible $\Leftrightarrow 0$ is not an eigenvalue of A.
- 3. If $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are eigenvectors that correspond to distinct eigenvalues, then $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are linearly independent.

Section 5.1 Slide 214

Section 5.1 Slide 215

Warning!

We can't determine the eigenvalues of a matrix from its reduced form.

Row reductions change the eigenvalues of a matrix.

Example: suppose $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. The eigenvalues are $\lambda = 2, 0$, because $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = A \begin{bmatrix} 1 & 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} =$

- $\bullet~$ But the reduced echelon form of A is:
- The reduced echelon form is triangular, and its eigenvalues are:

Section 5.1 Slide 216

Additional Resource

3Blue1Brown

A beautiful, animated, and visual explanation of eigenvalues and eigenvectors.

http://bit.ly/21XyJPg

Section 5.1 Slide 217

Section 5.2 : The Characteristic Equation

Chapter 5 : Eigenvalues and Eigenvectors Math 1554 Linear Algebra

Topics and Objectives

Topics

- We will cover these topics in this section.
- $1. \ \mbox{The characteristic polynomial of a matrix}$
- 2. Algebraic and geometric multiplicity of eigenvalues
- 3. Similar matrices

Objectives

For the topics covered in this section, students are expected to be able to do the following.

- 1. Construct the characteristic polynomial of a matrix and use it to identify eigenvalues and their multiplicities.
- 2. Characterize the long-term behaviour of dynamical systems using eigenvalue decompositions.

Section 5.2 Slide 218

Section 5.2 Slide 219

The Characteristic Polynomial

Recall:

 λ is an eigenvalue of $A \Leftrightarrow (A - \lambda I)$ is not _____

Therefore, to calculate the eigenvalues of A, we can solve

 $\det(A - \lambda I) =$

The quantity $det(A - \lambda I)$ is the **characteristic polynomial** of A.

The quantity $\det(A - \lambda I) = 0$ is the characteristic equation of A.

The roots of the characteristic polynomial are the $___$ of A.

Section 5.2 Slide 220

Section 5.2 Slide 221

Example

The characteristic polynomial of $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$ is:

So the eigenvalues of \boldsymbol{A} are:

Characteristic Polynomial of 2×2 Matrices

Express the characteristic equation of

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

in terms of its determinant. What is the equation when M is singular?

Algebraic Multiplicity

Definition The **algebraic multiplicity** of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Example

Compute the algebraic multiplicities of the eigenvalues for the matrix

(1)	0	0	0)
0	0	0	0
0	0	-1	0
0	0	0	0/

Section 5.2 Slide 222

Section 5.2 Slide 223

Geometric Multiplicity

Definition

The geometric multiplicity of an eigenvalue λ is the dimension of $\mathrm{Null}(A-\lambda I).$

1. Geometric multiplicity is always at least 1. It can be smaller than algebraic multiplicity.

2. Here is the basic example:

$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

 $\lambda=0$ is the only eigenvalue. Its algebraic multiplicity is 2, but the geometric multiplicity is 1.

Section 5.2 Slide 224

Example

Give an example of a 4×4 matrix with $\lambda=0$ the only eigenvalue, but the geometric multiplicity of $\lambda=0$ is one.

Section 5.2 Slide 225

Section 5.2 Slide 227

Recall: Long-Term Behavior of Markov Chains

Recall:

• We often want to know what happens to a Markov Chain

$$\vec{x}_{k+1} = P\vec{x}_k, \quad k = 0, 1, 2, \dots$$

as $k \to \infty$.

• If P is regular, then there is a _____

Now lets ask:

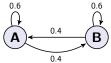
- If we don't know whether P is regular, what else might we do to describe the long-term behavior of the system?
- What can eigenvalues tell us about the behavior of these systems?

Example: Eigenvalues and Markov Chains

Note: the textbook has a similar example that you can review. Consider the Markov Chain:

$$\vec{x}_{k+1} = P\vec{x}_k = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix} \vec{x}_k, \quad k = 0, 1, 2, 3, \dots, \quad \vec{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

This system can be represented schematically with two nodes, A and B: $% \label{eq:basic}$



Goal: use eigenvalues to describe the long-term behavior of our system.

What are the eigenvalues of P?

Use the eigenvalues and eigenvectors of P to analyze the long-term behaviour of the system. In other words, determine what \vec{x}_k tends to as $k\to\infty.$

What are the corresponding eigenvectors of P?

Section 5.2 Slide 228

Section 5.2 Slide 229

Similar Matrices

Definition

Two $n \times n$ matrices A and B are similar if there is a matrix P so that $A = PBP^{-1}.$

Theorem

If \boldsymbol{A} and \boldsymbol{B} similar, then they have the same characteristic polynomial.

If time permits, we will explain or prove this theorem in lecture. Note:

- $\bullet\,$ Our textbook introduces similar matrices in Section 5.2, but doesn't have exercises on this concept until 5.3.
- $\bullet\,$ Two matrices, A and B, do not need to be similar to have the same eigenvalues. For example,

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

1. True or false.

Additional Examples (if time permits)

- a) If A is similar to the identity matrix, then A is equal to the identity matrix.
- $b) \ \mbox{A}$ row replacement operation on a matrix does not change its eigenvalues.
- 2. For what values of k does the matrix have one real eigenvalue with algebraic multiplicity 2?

$$\begin{pmatrix} -3 & k \\ 2 & -6 \end{pmatrix}$$

Section 5.2 Slide 231

Section 5.2 Slide 230