Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices
2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Determine whether a matrix can be diagonalized, and if possible diagonalize a square matrix.
2. Apply diagonalization to compute matrix powers.

Powers of Diagonal Matrices

If A is diagonal, then A^{k} is easy to compute. For example,

$$
A=\left(\begin{array}{cc}
3 & 0 \\
0 & 0.5
\end{array}\right)
$$

$A^{2}=$
$A^{k}=$

But what if A is not diagonal?

Diagonalization

Suppose $A \in \mathbb{R}^{n \times n}$. We say that A is diagonalizable if it is similar to a diagonal matrix, D. That is, we can write

$$
A=P D P^{-1}
$$

Diagonalization

> Theorem
> If A is diagonalizable $\Leftrightarrow A$ has n linearly independent eigenvectors.

Note: the symbol \Leftrightarrow means " if and only if ".
Also note that $A=P D P^{-1}$ if and only if

$$
A=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2} \cdots \vec{v}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2} \cdots \vec{v}_{n}
\end{array}\right]^{-1}
$$

where $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent eigenvectors, and $\lambda_{1}, \ldots, \lambda_{n}$ are the corresponding eigenvalues (in order).

Section 5.3 Slide 237

Example 2

Diagonalize if possible.
$\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$

Distinct Eigenvalues

> Theorem If A is $n \times n$ and has n distinct eigenvalues, then A is diagonalizable.

Why does this theorem hold?

Is it necessary for an $n \times n$ matrix to have n distinct eigenvalues for it to be diagonalizable?

Non-Distinct Eigenvalues

Theorem. Suppose

- A is $n \times n$
- A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}, k \leq n$
- $a_{i}=$ algebraic multiplicity of λ_{i}
- $d_{i}=$ dimension of λ_{i} eigenspace ("geometric multiplicity")

Then

1. $d_{i} \leq a_{i}$ for all i
2. A is diagonalizable $\Leftrightarrow \Sigma d_{i}=n \Leftrightarrow d_{i}=a_{i}$ for all i
3. A is diagonalizable \Leftrightarrow the eigenvectors, for all eigenvalues, together form a basis for \mathbb{R}^{n}.

Additional Example (if time permits)

Note that

$$
\vec{x}_{k}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \vec{x}_{k-1}, \quad \vec{x}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad k=1,2,3, \ldots
$$

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the $n^{t h}$ number in this sequence.

Topics and Objectives

Chapter 10 : Finite-State Markov Chains

10.2 : The Steady-State Vector and Page Rank

Where is Chapter 10?

- The material for this part of the course is covered in Section 10.2
- Chapter 10 is not included in the print version of the book, but it is in the on-line version.
- If you read 10.2 , and I recommend that you do, you will find that it requires an understanding of 10.1 .
- You are not required to understand the material in 10.1.

Other sources that you may find helpful are listed below.

1. PageRank Algorithm (Math Explorer's Club, Cornell Univ.) http://www.math.cornell.edu/~mec/Winter2009/ RalucaRemus/Lecture3/lecture3.html
2. Austin, D. How Google Finds Your Needle in the Web's Haystack. Available at: http:
//www.ams.org/samplings/feature-column/fcarc-pagerank
3. Bryan, K., Leise, T. The $\$ 25,000,000,000$ Eigenvector: The Linear Algebra behind Google. SIAM Review, 48(3). Available at: http://userpages.umbc.edu/~kogan/teaching/m430/ GooglePageRank.pdf

Topics

1. Review of Markov chains
2. Theorem describing the steady state of a Markov chain
3. Applying Markov chains to model website usage.
4. Calculating the PageRank of a web.

Learning Objectives

1. Determine whether a stochastic matrix is regular.
2. Apply matrix powers and theorems to characterize the long-term behaviour of a Markov chain.
3. Construct a transition matrix, a Markov Chain, and a Google Matrix for a given web, and compute the PageRank of the web.

Steady State Vectors

Recall the car rental problem from our Section 4.9 lecture.

Problem

A car rental company has 3 rental locations, A, B, and C.

	rented from			
		A	B	C
returned to	A	.8	.1	.2
	B	.2	.6	.3
	C	.0	.3	.5

There are 10 cars at each location today, what happens to the distribution of cars after a long time?

Long Term Behaviour

Can use the transition matrix, P, to find the distribution of cars after 1 week:

$$
\vec{x}_{1}=P \vec{x}_{0}
$$

The distribution of cars after 2 weeks is:

$$
\vec{x}_{2}=P \vec{x}_{1}=
$$

The distribution of cars after n weeks is:

Section 10.2 Slide 262

Theorem 1

If P is a regular $m \times m$ transition matrix with $m \geq 2$, then the following statements are all true.

1. There is a stochastic matrix Π such that

$$
\lim _{n \rightarrow \infty} P^{n}=\Pi
$$

2. Each column of Π is the same probability vector \vec{q}.
3. For any initial probability vector \vec{x}_{0},

$$
\lim _{n \rightarrow \infty} P^{n} \vec{x}_{0}=\vec{q}
$$

4. P has a unique eigenvector, \vec{q}, which has eigenvalue $\lambda=1$.
5. The eigenvalues of P satisfy $|\lambda| \leq 1$.

We will apply this theorem when solving PageRank problems.

Long Term Behaviour

To investigate the long-term behaviour of a system that has a regular transition matrix P, we could:

1. compute $P^{n} \vec{x}_{0}$ for large n.
2. compute the steady-state vector, \vec{q}, by solving $\vec{q}=P \vec{q}$.

To solve PageRank problems, we will rely on the first approach.

Example 1

Suppose we have 4 web pages that link to each other according to this diagram.

Page 1 has links to pages \qquad -

Page 2 has links to pages \qquad .

If a user on a page in this web is equally likely to go to any of the pages that their page links to, construct a Markov chain that represents how users navigate this web.

Transition Matrix, Importance, and PageRank

- The square matrix we constructed in the previous example is a transition matrix. It describes how users transition between pages in the web.
- The steady-state vector, \vec{q}, for the Markov-chain, can characterize the long-term behavior of users in a given web.
- If \vec{q} is unique, the importance of a page in a web is given by its corresponding entry in \vec{q}.
- The PageRank is the ranking assigned to each page based on its importance. The highest ranked page has PageRank 1, the second PageRank 2, and so on.

Is the transition matrix in Example 1 a regular matrix?

Adjustment 2

Adjustment 2
A user at any page will navigate any page among those that their page links to with equal probability p, and to any page in the web with equal probability $1-p$. The transition matrix becomes

$$
G=p P_{*}+(1-p) K
$$

All the elements of the $n \times n$ matrix K are equal to $1 / n$.
p is referred to as the damping factor, Google is said to use $p=0.85$.
With adjustments 1 and 2, our the Google matrix is:

Adjustment 1

If a user reaches a page that doesn't link to other pages, then the user will choose any page in the web, with equal probability and move to that page.

Let's denote this modified transition matrix as P_{*}. Our transition matrix in Example 1 becomes:

Computing Page Rank

- Because G is stochastic, for any initial probability vector \vec{x}_{0},

$$
\lim _{n \rightarrow \infty} G^{n} \vec{x}_{0}=\vec{q}
$$

- In practice we can compute the page rank for each page in the web by evaluating:

$$
G^{n} \vec{x}_{0}
$$

for large n. The elements of the resulting vector give the page ranks of each page in the web.
On a MATH 1554 exam,

- problems that require a calculator will not be on your exam
- you may construct your G matrix using factions instead of decimal expansions

Example 2 (if time permits)
Construct the Google Matrix for the web below (your instructor would provide the web).

WolframAlpha and MATLAB Syntax for Matrix Powers

Suppose we want to compute

$$
\left(\begin{array}{ccc}
.8 & .1 & .2 \\
.2 & .6 & .3 \\
.0 & .3 & .5
\end{array}\right)^{10}
$$

At wolframalpha.com, we can use the syntax:
MatrixPower[\{\{.8,.1, .2\},\{.2, .6, .3\}, \{.0, .3, .5\}\},10]
In MATLAB, we can use the syntax:

You will need to compute a few matrix powers in your MML homework, and in your future courses, depending on what courses you end up taking.

There is (of course) Much More to PageRank

The PageRank Algorithm currently used by Google is under constant development, and tailored to individual users.

- When PageRank was devised, in 1996, Yahoo! used humans to provide a "index for the Internet, " which was 10 million pages.
- The PageRank algorithm was produced as a competing method. The patent was awarded to Stanford University, and exclusively licensed to the newly formed Google corporation.
- Brin and Page combined the PageRank algorithm with a webcrawler to provide regular updates to the transition matrix for the web.
- The explosive growth of the web soon overwhelmed human based approaches to searching the internet.

Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate
2. Diagonalizing matrices with complex eigenvalues
3. Eigenvalue theorems

Learning Objectives

1. Diagonalize 2×2 matrices that have complex eigenvalues.
2. Use eigenvalues to determine identify the rotation and dilation of a linear transform.
3. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?

Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square roots of negative numbers. For example:

$$
x^{2}+1=0
$$

The roots of this equation are:

We usually write $\sqrt{-1}$ as i (for "imaginary").

We can conjugate complex numbers: $\overline{a+b i}=$ \qquad

The absolute value of a complex number: $|a+b i|=$ \qquad

We can write complex numbers in polar form: $a+i b=r(\cos \phi+i \sin \phi)$

Complex Conjugate Properties

If x and y are complex numbers, $\vec{v} \in \mathbb{C}^{n}$, it can be shown that:

- $\overline{(x+y)}=\bar{x}+\bar{y}$
- $\overline{A \vec{v}}=A \overline{\vec{v}}$
- $\operatorname{Im}(x \bar{x})=0$.

Example True or false: if x and y are complex numbers, then

$$
\overline{(x y)}=\bar{x} \bar{y}
$$

Euler's Formula

Suppose z_{1} has angle ϕ_{1}, and z_{2} has angle ϕ_{2}.

The product $z_{1} z_{2}$ has angle $\phi_{1}+\phi_{2}$ and modulus $|z||w|$. Easy to remember using Euler's formula.

$$
z=|z| \mathrm{e}^{i \phi}
$$

The product $z_{1} z_{2}$ is

$$
z_{3}=z_{1} z_{2}=\left(\left|z_{1}\right| \mathrm{e}^{i \phi_{1}}\right)\left(\left|z_{2}\right| e^{i \phi_{2}}\right)=\left|z_{1}\right|\left|z_{2}\right| \mathrm{e}^{i\left(\phi_{1}+\phi_{2}\right)}
$$

Complex Numbers and Polynomials

Theorem: Fundamental Theorem of Algebra
Every polynomial of degree n has exactly n complex roots, counting multiplicity

> 1. If $\lambda \in \mathbb{C}$ is a root of a real polynomial $p(x)$, then the conjugate $\bar{\lambda}$ is also a root of $p(x)$.
> 2. If λ is an eigenvalue of real matrix A with eigenvector \vec{v}, then $\bar{\lambda}$ is an eigenvalue of A with eigenvector \vec{v}.

Example
Four of the eigenvalues of a 7×7 matrix are $-2,4+i,-4-i$, and i. What are the other eigenvalues?

Example

The matrix that rotates vectors by $\phi=\pi / 4$ radians about the origin, and then scales (or dilates) vectors by $r=\sqrt{2}$, is

$$
A=\left[\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

What are the eigenvalues of A ? Express them in polar form.

Diagonalization

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } A \text { be a real } 2 \times 2 \text { matrix with a complex eigenvalue } \\
& \lambda=a-b i(\text { where } b \neq 0) \text { and associated eigenvector } \vec{v} \text {. } \\
& \text { Then we may construct the diagonalization } \\
& A=P C P^{-1} \\
& \text { where } \\
& P=\left(\begin{array}{ll}
\operatorname{Re} \vec{v} & \operatorname{Im} \vec{v}
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
\end{aligned}
$$

Note the following.

- C is referred to as a rotation dilation matrix, because it is the composition of a rotation by ϕ and dilation by r.
- The proof for why the columns of P are always linearly independent is a bit long, it goes beyond the scope of this course.

Example

If possible, construct matrices P and C such that $A P=P C$.

$$
A=\left(\begin{array}{cc}
1 & -2 \\
1 & 3
\end{array}\right)
$$

Topics and Objectives

Topics

1. Dot product of vectors
2. Magnitude of vectors, and distances in \mathbb{R}^{n}
3. Orthogonal vectors and complements
4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude) of a vector, (c) distance between two points in \mathbb{R}^{n}, and (d) angles between vectors.
2. Apply theorems related to orthogonal complements, and their relationships to Row and Null space, to characterize vectors and linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A ? To the columns of A ?

The Dot Product

$$
\vec{u} \cdot \vec{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} .
$$

Example 1: For what values of k is $\vec{u} \cdot \vec{v}=0$?

$$
\vec{u}=\left(\begin{array}{c}
-1 \\
3 \\
k \\
2
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
4 \\
2 \\
1 \\
-3
\end{array}\right)
$$

Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits linear properties.

Theorem (Basic Identities of Dot Product)
Let $\vec{u}, \vec{v}, \vec{w}$ be three vectors in \mathbb{R}^{n}, and $c \in \mathbb{R}$.

1. (Symmetry) $\vec{u} \cdot \vec{w}=$ \qquad
2. (Linear in each vector) $(\vec{v}+\vec{w}) \cdot \vec{u}=$ \qquad
3. (Scalars) $(c \vec{u}) \cdot \vec{w}=$ \qquad
4. (Positivity) $\vec{u} \cdot \vec{u} \geq 0$, and the dot product equals \qquad

The Length of a Vector

$$
\begin{aligned}
& \text { Definition } \\
& \text { The length of a vector } \vec{u} \in \mathbb{R}^{n} \text { is }
\end{aligned}
$$

$$
\|\vec{u}\|=\sqrt{\vec{u} \cdot \vec{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

Example: the length of the vector $\overrightarrow{O P}$ is

Length of Vectors and Unit Vectors

Note: for any vector \vec{v} and scalar c, the length of $c \vec{v}$ is

$$
\|c \vec{v}\|=
$$

Definition
If $\vec{v} \in \mathbb{R}^{n}$ has length one, we say that it is a unit vector.

Example: Let W be a subspace of \mathbb{R}^{4} spanned by

$$
\vec{v}=\left[\begin{array}{c}
-1 \\
-3 \\
-2 \\
1
\end{array}\right]
$$

a) Construct a unit vector \vec{u} in the same direction as \vec{v}.
b) Construct a basis for W using unit vectors.

Example

Let \vec{u}, \vec{v} be two vectors in \mathbb{R}^{n} with $\|\vec{u}\|=5,\|\vec{v}\|=\sqrt{3}$, and $\vec{u} \cdot \vec{v}=-1$. Compute the value of $\|\vec{u}+\vec{v}\|$.

Distance in \mathbb{R}^{n}

Definition
For $\vec{u}, \vec{v} \in \mathbb{R}^{n}$, the distance between \vec{u} and \vec{v} is given by the formula

Example: Compute the distance from $\vec{u}=\binom{7}{1}$ and $\vec{v}=\binom{3}{2}$.

Orthogonality

$$
\begin{aligned}
& \text { Definition (Orthogonal Vectors) } \\
& \text { Two vectors } \vec{u} \text { and } \vec{w} \text { are orthogonal if } \vec{u} \cdot \vec{w}=0 \text {. This } \\
& \text { is equivalent to: } \\
& \qquad\|\vec{u}+\vec{w}\|^{2}=
\end{aligned}
$$

Note: The zero vector is orthogonal to every vector. But we usually only mean non-zero vectors.

Orthogonal Compliments

Definitions
Let W be a subspace of \mathbb{R}^{n}. A vector $\vec{z} \in \mathbb{R}^{n}$ is said to be orthogonal to W if \vec{z} is orthogonal to each vector in W.

The set of all vectors orthogonal to W is a subspace, the orthogonal compliment of W, or W^{\perp} or ' W perp.'

$$
W^{\perp}=\left\{\vec{z} \in \mathbb{R}^{n}: \vec{z}\right.
$$

Example

Sketch the subspace spanned by the set of vectors \vec{u} that are orthogonal to $\vec{v}=\binom{3}{2}$.

Example

Line L is a subspace of \mathbb{R}^{3} spanned by $\vec{v}=\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right)$. Then the space L^{\perp}
is a plane. Construct an equation of the plane L^{\perp}.

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF

Row A

Rofinition A is the space spanned by the rows of matrix A.

We can show that

- $\operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(\operatorname{Col}(A))$
- a basis for Row A is the pivot rows of A

For any $A \in \mathbb{R}^{m \times n}$, the orthogonal complement of Row A is $\operatorname{Null} A$, and the orthogonal complement of $\operatorname{Col} A$ is $\operatorname{Null} A^{T}$.

The idea behind this theorem is described in the diagram below.

Example

Describe the $\operatorname{Null}(A)$ in terms of an orthogonal subspace.
A vector \vec{x} is in Null A if and only if

1. $A \vec{x}=$
2. This means that \vec{x} is \qquad to each row of A.
3. Row A is \qquad to Null A.
4. The dimension of Row A plus the dimension of Null A equals \square

Section 6.1 Slide 286

Additional Example (if time permits)

A has the LU factorization:

$$
A=L U=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

a) Construct a basis for $(\operatorname{Row} A)^{\perp}$
b) Construct a basis for $(\operatorname{Col} A)^{\perp}$

Hint: it is not necessary to compute A. Recall that $A^{T}=U^{T} L^{T}$, matrix
L^{T} is invertible, and U^{T} has a non-empty nullspace.

Angles

For example, consider the vectors below.

Topics and Objectives

Topics

1. Orthogonal Sets of Vectors
2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of \mathbb{R}^{n}, and
d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for \mathbb{R}^{3} ?

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right] / \sqrt{11}, \quad\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right] / \sqrt{6}, \quad\left[\begin{array}{c}
-1 \\
-4 \\
7
\end{array}\right] / \sqrt{66}
$$

Orthogonal Vector Sets

> Definition
> A set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are an orthogonal set of vectors if for each $j \neq k, \vec{u}_{j} \perp \vec{u}_{k}$.

Example: Fill in the missing entries to make $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ an orthogonal set of vectors.

$$
\vec{u}_{1}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right], \quad \vec{u}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right], \quad \vec{u}_{3}=[\square
$$

Linear Independence

> Theorem (Linear Independence for Orthogonal Sets) Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal set of vectors. Then, for scalars c_{1}, \ldots, c_{p},

$$
\left\|c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}\right\|^{2}=c_{1}^{2}\left\|\vec{u}_{1}\right\|^{2}+\cdots+c_{p}^{2}\left\|\vec{u}_{p}\right\|^{2} .
$$

In particular, if all the vectors \vec{u}_{r} are non-zero, the set of vectors $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are linearly independent.

Orthogonal Bases

Theorem (Expansion in Orthogonal Basis)
Let $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. Then, for any vector $\vec{w} \in W$,

$$
\vec{w}=c_{1} \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}
$$

Above, the scalars are $c_{q}=\frac{\vec{w} \cdot \vec{u}_{q}}{\vec{u}_{q} \cdot \vec{u}_{q}}$.
For example, any vector $\vec{w} \in \mathbb{R}^{3}$ can be written as a linear combination of $\left\{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\right\}$, or some other orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.

Example

$$
\vec{x}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \vec{u}=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \quad \vec{v}=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), \quad \vec{s}=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)
$$

Let W be the subspace of \mathbb{R}^{3} that is orthogonal to \vec{x}.
a) Check that an orthogonal basis for W is given by \vec{u} and \vec{v}.
b) Compute the expansion of \vec{s} in basis W.

Projections

Let \vec{u} be a non-zero vector, and let \vec{v} be some other vector. The orthogonal projection of \vec{v} onto the direction of \vec{u} is the vector in the span of \vec{u} that is closest to \vec{v}.

$$
\operatorname{proj}_{\vec{u}} \vec{v}=\frac{\vec{v} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

The vector $\vec{w}=\vec{v}-\operatorname{proj}_{\vec{u}} \vec{v}$ is orthogonal to \vec{u}, so that

$$
\vec{v}=\operatorname{proj}_{\vec{u}} \vec{v}+\vec{w}
$$

$$
\|\vec{v}\|^{2}=\left\|\operatorname{proj}_{\vec{u}} \vec{v}\right\|^{2}+\|\vec{w}\|^{2}
$$

Example

The subspace W is a subspace of \mathbb{R}^{3} perpendicular to $(1,1,1)$. Calculate the missing coefficients in the orthonormal basis for W.

Orthogonal Matrices
An orthogonal matrix is a square matrix whose columns are orthonormal.

Theorem
An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I_{n}$.

Note that this theorem does not apply when $n>m$. Why?

Example

Compute the length of the vector below.
$\left[\begin{array}{cc}1 / 2 & 2 / \sqrt{14} \\ 1 / 2 & 1 / \sqrt{14} \\ 1 / 2 & -3 / \sqrt{14} \\ 1 / 2 & 0\end{array}\right]\left[\begin{array}{c}\sqrt{2} \\ -3\end{array}\right]$

Theorem

$$
\begin{aligned}
& \text { Theorem (Mapping Properties of Orthogonal Matrices) } \\
& \text { Assume } m \times m \text { matrix } U \text { has orthonormal columns. Then } \\
& \text { 1. (Preserves length) }\|U \vec{x}\|=\square \\
& \text { 2. (Preserves angles) }(U \vec{x}) \cdot(U \vec{y})=\square
\end{aligned}
$$

Additional Example (if time permits)

A 4×4 orthonormal matrix is below. It's columns are orthonormal

$$
A=\left[\begin{array}{cccc}
1 / 2 & 2 / \sqrt{10} & 1 / 2 & 1 / \sqrt{10} \\
1 / 2 & 1 / \sqrt{10} & -1 / 2 & -2 / \sqrt{10} \\
1 / 2 & -1 / \sqrt{10} & -1 / 2 & 2 / \sqrt{10} \\
1 / 2 & -2 / \sqrt{10} & 1 / 2 & -1 / \sqrt{10}
\end{array}\right]
$$

Verify that the rows also form an orthonormal basis.

Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares
Math 1554 Linear Algebra

Vectors \vec{e}_{1} and \vec{e}_{2} form an orthonormal basis for subspace W. Vector \vec{y} is not in W.
The orthogonal projection of \vec{y} onto $W=\operatorname{Span}\left\{\vec{e}_{1}, \vec{e}_{2}\right\}$ is \hat{y}.

Example 1

Let $\vec{u}_{1}, \ldots, \vec{u}_{5}$ be an orthonormal basis for \mathbb{R}^{5}. Let $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$. For a vector $\vec{y} \in \mathbb{R}^{5}$, write $\vec{y}=\widehat{y}+w^{\perp}$, where $\widehat{y} \in W$ and $w^{\perp} \in W^{\perp}$.

Topics and Objectives

Topics

1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) construct vector approximations using projections,
d) characterize bases for subspaces of \mathbb{R}^{n}, and
e) construct orthonormal bases

Motivating Question For the matrix A and vector \vec{b}, which vector \widehat{b} in column space of A, is closest to \vec{b} ?

$$
A=\left[\begin{array}{cc}
1 & 2 \\
3 & 0 \\
-4 & -2
\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Orthogonal Decomposition Theorem

Theorem

Let W be a subspace of \mathbb{R}^{n}. Then, each vector $\vec{y} \in \mathbb{R}^{n}$ has the unique decomposition

$$
\vec{y}=\widehat{y}+w^{\perp}, \quad \widehat{y} \in W, \quad w^{\perp} \in W^{\perp} .
$$

And, if $\vec{u}_{1}, \ldots, \vec{u}_{p}$ is any orthogonal basis for W,

$$
\hat{y}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\cdots+\frac{\vec{y} \cdot \vec{u}_{p}}{\vec{u}_{p} \cdot \vec{u}_{p}} \vec{u}_{p} .
$$

We say that \hat{y} is the orthogonal projection of \vec{y} onto W.

If time permits, we will prove this theorem on the next slide.

Proof (if time permits)

We can write
$\widehat{y}=$
Then, $w^{\perp}=\vec{y}-\widehat{y}$ is in W^{\perp} because

Uniqueness:

Example 2a

$$
\vec{y}=\left(\begin{array}{c}
-1 \\
2 \\
6
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)
$$

Construct the decomposition $\vec{y}=\widehat{y}+w^{\perp}$, where \widehat{y} is the orthogonal projection of \vec{y} onto the subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$.

Best Approximation Theorem

Theorem
Let W be a subspace of $\mathbb{R}^{n}, \vec{y} \in \mathbb{R}^{n}$, and \widehat{y} is the orthogonal projection of \vec{y} onto W. Then for any $\vec{w} \neq \hat{y} \in W$, we have

$$
\|\vec{y}-\widehat{y}\|<\|\vec{y}-\vec{w}\|
$$

That is, \widehat{y} is the unique vector in W that is closest to \vec{y}.

Proof (if time permits)

The orthogonal projection of \vec{y} onto W is the closest point in W to \vec{y}.

Example 2b

$$
\vec{y}=\left(\begin{array}{c}
-1 \\
2 \\
6
\end{array}\right), \quad \vec{u}_{1}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right)
$$

What is the distance between \vec{y} and subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$? Note that these vectors are the same vectors that we used in Example 2a.

Additional Example (if time permits)

Indicate whether each statement is true or false. If true, explain why in one or two sentences. If false, give a counter example or explain why in one or two sentences.
a) If \vec{x} is orthogonal to \vec{v} and \vec{w}, then \vec{x} is also orthogonal to $\vec{v}-\vec{w}$.
b) If $\operatorname{proj}_{W} \vec{y}=\vec{y}$, then $\vec{y} \in W$.
c) If $\vec{y}=\vec{u}_{1}+\vec{v}_{1}$, where $\vec{u}_{1} \in W$ and $\vec{v}_{1} \in W^{\perp}$, then \vec{u}_{1} is the orthogonal projection of \vec{y} onto W

Topics and Objectives

Topics

1. Gram Schmidt Process
2. The $Q R$ decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR decomposition, to construct an orthogonal basis.
2. Compute the $Q R$ factorization of a matrix.

Motivating Question The vectors below span a subspace W of \mathbb{R}^{4}. Identify an orthogonal basis for W.

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
$$

Vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are given linearly independent vectors. We wish to construct an orthonormal basis $\left\{\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right\}$ for the space that they span.

Example

The vectors below span a subspace W of \mathbb{R}^{4}. Construct an orthogonal basis for W

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

The Gram-Schmidt Process

Given a basis $\left\{\vec{x}_{1}, \ldots, \vec{x}_{p}\right\}$ for a subspace W of \mathbb{R}^{n}, iteratively define

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2} \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\cdots-\frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}
\end{aligned}
$$

Then, $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is an orthogonal basis for W.

Geometric Interpretation

Suppose $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are linearly independent vectors in \mathbb{R}^{3}. We wish to construct an orthogonal basis for the space that they span.

We construct vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, which form our orthogonal basis. $W_{1}=\operatorname{Span}\left\{\vec{v}_{1}\right\}, W_{2}=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$.

Orthonormal Bases

Definition
A set of vectors form an orthonormal basis if the vectors are mutually orthogonal and have unit length.

Example

The two vectors below form an orthogonal basis for a subspace W.
Obtain an orthonormal basis for W.

$$
\vec{v}_{1}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-2 \\
3 \\
1
\end{array}\right] .
$$

QR Factorization

Theorem
Any $m \times n$ matrix A with linearly independent columns has the $\mathbf{Q R}$ factorization

$$
A=Q R
$$

where

1. Q is $m \times n$, its columns are an orthonormal basis for $\operatorname{Col} A$.
2. R is $n \times n$, upper triangular, with positive entries on its diagonal, and the length of the $j^{t h}$ column of R is equal to the length of the $j^{\text {th }}$ column of A.

In the interest of time:

- we will not consider the case where A has linearly dependent columns
- students are not expected to know the conditions for which A has a QR factorization

Proof

Examples (if time permits)

Construct the $Q R$ decomposition for A.
a) $A=\left[\begin{array}{cc}3 & -2 \\ 2 & 3 \\ 0 & 1\end{array}\right]$
b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$

Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

$$
\text { Math } 1554 \text { Linear Algebra }
$$

Inconsistent Systems
The Least Squares Solution to a Linear System

Suppose we want to construct a line of the form

$$
y=m x+b
$$

that best fits the data below.

$$
\left.\begin{array}{ccc}
\text { Can we 'solve' this inconsistent system? } \\
& \text { From the data, we can construct the system: } \\
\hline 1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
1 \\
2.5 \\
3
\end{array}\right]
$$

Topics and Objectives

Topics

1. Least Squares Problems
2. Different methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares problems using the normal equations and the $Q R$ decomposition.

Motivating Question A series of measurements are corrupted by random errors. How can the dominant trend be extracted from the measurements with random error?

A Geometric Interpretation

The vector \vec{b} is closer to $A \hat{x}$ than to $A \vec{x}$ for all other $\vec{x} \in \operatorname{Col} A$.

1. If $\vec{b} \in \operatorname{Col} A$, then \widehat{x} is ..
2. Seek \widehat{x} so that $A \widehat{x}$ is as close to \vec{b} as possible. That is, \widehat{x} should solve $A \widehat{x}=\widehat{b}$ where \widehat{b} is \ldots

Previous data is the important time series of mean CO_{2} in the atmosphere. The data is collected at the Mauna Loa observatory on the island of Hawaii (The Big Island). One of the most important observatories in the world, it is located at the top of the Mauna Kea volcano, 4,205 meters altitude.

Important Examples: Overdetermined Systems (Tall/Thin Matrices)

A variety of factors impact the measured quantity.

In the above figure, the dashed red line with diamond symbols represents the monthly mean values, centered on the middle of each month. The black line with the square symbols represents the same, after correction for the average seasonal cycle. (NOAA graph.)

Section 6.5 Slide 330

Important Examples: Underdetermined Systems (Short/Fat Matrices)

There are too few measurements, and many solutions to $A \vec{x}=\vec{b}$. Choose \widehat{x} solving the system, with the smallest length

1. $A \widehat{x}=\vec{b}$.
2. For all \vec{x} with $A \vec{x}=\vec{b},\|\widehat{x}\| \leq\|\vec{x}\|$.

This is the least squares problem of ' Big Data.' (But not addressed in this course.)

The Normal Equations

Theorem (Normal Equations for Least Squares)
The least squares solutions to $A \vec{x}=\vec{b}$ coincide with the solutions to

$$
\underbrace{A^{T} A \vec{x}=A^{T} \vec{b}}_{\text {Normal Equations }}
$$

Example

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \tag{1}\\
0 & 2 \\
1 & 1
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]= \\
A^{T} \vec{b} & =\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]=
\end{aligned}
$$

Derivation

The least-squares solution \hat{x} is in \mathbb{R}^{n}.

1. \widehat{x} is the least squares solution, is equivalent to $\vec{b}-A \widehat{x}$ is orthogonal to \qquad A.
2. A vector \vec{v} is in Null A^{T} if and only if $\square \vec{v}=\overrightarrow{0}$.
3. So we obtain the Normal Equations:

Theorem

Example

Useful heuristic: $A^{T} A$ plays the role of 'length-squared' of the matrix A. (See the sections on symmetric matrices and singular value decomposition.)

Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{cc}
1 & -6 \\
1 & -2 \\
1 & 1 \\
1 & 7
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
2 \\
1 \\
6
\end{array}\right]
$$

Hint: the columns of A are orthogonal.
2. The columns of A are linearly independent.
. The matrix $A^{T} A$ is invertible.
And, if these statements hold, the least square solution is

$$
\widehat{x}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Theorem (Unique Solutions for Least Squares)
Let A be any $m \times n$ matrix. These statements are equivalent

1. The equation $A \vec{x}=\vec{b}$ has a unique least-squares solution for each $\vec{b} \in \mathbb{R}^{m}$
[^0]Example 3. Compute the least squares solution to $A \vec{x}=\vec{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

Solution. The $Q R$ decomposition of A is

$$
A=Q R=\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 4 & 5 \\
0 & 2 & 3 \\
0 & 0 & 2
\end{array}\right]
$$

Topics and Objectives

Topics

1. Least Squares Lines
2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to do the following.

1. Apply least-squares and multiple regression to construct a linear model from a set of data points.
2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line $y=\beta_{0}+\beta_{1} x$ that best fits the data

$$
\begin{array}{l|llll}
x & 2 & 5 & 7 & 8 \\
\hline y & 1 & 1 & 4 & 3
\end{array}
$$

The Least Squares Line

Graph below gives an approximate linear relationship between x and y.
Black circles are data.
. Blue line is the least squares line.
3. Lengths of red lines are the \qquad .
The least squares line minimizes the sum of squares of the \qquad -.

Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

$$
y=\beta_{0}+\beta_{1} f_{1}(x)+\beta_{1} f_{2}(x)+\cdots+\beta_{k} f_{k}(x)
$$

where the functions f_{j} are known. Should have only a few functions! Keep in mind this is a linear problem in the β variables.
Example 1 Compute the least squares line $y=\beta_{0}+\beta_{1} x$ that best fits the data

$$
\begin{array}{l|llll}
x & 2 & 5 & 7 & 8 \\
\hline y & 1 & 1 & 4 & 3
\end{array}
$$

We want to solve
$\left[\begin{array}{ll}1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8\end{array}\right]\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 3\end{array}\right]$

This is a least-squares problem : $X \vec{\beta}=\vec{y}$.

$$
X^{T} \vec{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right][]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]
$$

So the least-squares solution is given by

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c}
9 \\
59
\end{array}\right]} \\
& y=\beta_{0}+\beta_{1} x=\frac{-5}{21}+\frac{19}{42} x
\end{aligned}
$$

As we may have guessed, β_{0} is negative, and β_{1} is positive.

Least Squares Fitting for Other Curves

Black line is yearly CO_{2} levels, and the monthly is the red line. To capture seasonality, would need a curve

$$
\text { daily } \mathrm{CO}_{2}=\beta_{0}+\beta_{1} t+\beta_{2} \sin \left(2 \pi \frac{t}{12}\right)+\beta_{3} \cos \left(2 \pi \frac{t}{12}\right)
$$

Above, t is time, measured in months.

Topics and Objectives

Topics

1. Symmetric matrices
2. Orthogonal diagonalization
3. Spectral decomposition

Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix, $A=P D P^{T}$.
2. Construct a spectral decomposition of a matrix.

Symmetric Matrices

> Definition
> Matrix A is symmetric if $A^{T}=A$.

Example. Which of the following matrices are symmetric? Symbols * and \star represent real numbers.

$$
\begin{array}{cc}
A=[*]
\end{array} \quad B=\left[\begin{array}{ll}
* & \star \\
\star & *
\end{array}\right] \quad C=\left[\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right]
$$

$A^{T} A$ is Symmetric

A very common example: For any matrix A with columns a_{1}, \ldots, a_{n},

$$
A^{T} A=\left[\begin{array}{ccc}
-- & a_{1}^{T} & -- \\
-- & a_{2}^{T} & -- \\
\vdots & \vdots & \vdots \\
-- & a_{n}^{T} & --
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
a_{1} & a_{2} & \cdots & a_{n} \\
\mid & \mid & \cdots & \mid
\end{array}\right]
$$

$$
=\underbrace{\left[\begin{array}{cccc}
a_{1}^{T} a_{1} & a_{1}^{T} a_{2} & \cdots & a_{1}^{T} a_{n} \\
a_{2}^{T} a_{1} & a_{2}^{T} a_{2} & \cdots & a_{2}^{T} a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n}^{T} a_{1} & a_{n}^{T} a_{2} & \cdots & a_{n}^{T} a_{n}
\end{array}\right]}_{\text {Entries are the dot products of columns of } A}
$$

Symmetric Matrices and their Eigenspaces

Theorem
A is a symmetric matrix, with eigenvectors \vec{v}_{1} and \vec{v}_{2} corresponding to two distinct eigenvalues. Then \vec{v}_{1} and \vec{v}_{2} are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are orthogonal subspaces.

Proof:

Example 1

Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda=-1,1
$$

Spectral Theorem

Recall: If P is an orthogonal $n \times n$ matrix, then $P^{-1}=P^{T}$, which implies $A=P D P^{T}$ is diagonalizable and symmetric.

$$
\begin{aligned}
& \text { Theorem: Spectral Theorem } \\
& \text { An } n \times n \text { symmetric matrix } A \text { has the following properties. } \\
& \text { 1. All eigenvalues of } A \text { are } \\
& \text { 2. The dimenison of each eigenspace is full, that it's } \\
& \text { dimension is equal to it's algebraic multiplicity. } \\
& \text { 3. The eigenspaces are mutually orthogonal. } \\
& \text { 4. } A \text { can be diagonalized: } A=P D P^{T} \text {, where } D \text { is diagonal } \\
& \text { and } P \text { is }
\end{aligned}
$$

Proof (if time permits):

Example 2

Construct a spectral decomposition for A whose orthogonal
diagonalization is given.

$$
\begin{aligned}
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) & =P D P^{T} \\
& =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
\end{aligned}
$$

Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Topics and Objectives

Topics

1. Quadratic forms
2. Change of variables
3. Principle axes theorem
4. Classifying quadratic forms

Learning Objectives

1. Characterize and classify quadratic forms using eigenvalues and eigenvectors.
2. Express quadratic forms in the form $Q(\vec{x})=\vec{x}^{T} A \vec{x}$.
3. Apply the principle axes theorem to express quadratic forms with no cross-product terms.

Motivating Question Does this inequality hold for all x, y ?

$$
x^{2}-6 x y+9 y^{2} \geq 0
$$

Example 1
Compute the quadratic form $\vec{x}^{T} A \vec{x}$ for the matrices below.

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right], \quad B=\left[\begin{array}{cc}
4 & 1 \\
1 & -3
\end{array}\right]
$$

Quadratic Forms

$$
\begin{aligned}
& \text { Definition } \\
& \text { A quadratic form is a function } Q: \mathbb{R}^{n} \rightarrow \mathbb{R} \text {, given by } \\
& Q(\vec{x})=\vec{x}^{T} A \vec{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{12} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]
\end{aligned}
$$

Matrix A is $n \times n$ and symmetric.

In the above, \vec{x} is a vector of variables.

Example 1 - Surface Plots

The surfaces for Example 1 are shown below.

Students are not expected to be able to sketch quadratic surfaces, but it is helpful to see what they look like.

Example 2

Write Q in the form $\vec{x}^{T} A \vec{x}$ for $\vec{x} \in \mathbb{R}^{3}$.

$$
Q(x)=5 x_{1}^{2}-x_{2}^{2}+3 x_{3}^{2}+6 x_{1} x_{3}-12 x_{2} x_{3}
$$

Change of Variable

If \vec{x} is a variable vector in \mathbb{R}^{n}, then a change of variable can be represented as

$$
\vec{x}=P \vec{y}, \quad \text { or } \quad \vec{y}=P^{-1} \vec{x}
$$

With this change of variable, the quadratic form $\vec{x}^{T} A \vec{x}$ becomes:

Principle Axes

Suppose $Q(\vec{x})=\vec{x}^{T} A \vec{x}$, where $A \in \mathbb{R}^{2}$ is symmetric and invertible Then the set of \vec{x} that satisfies

$$
C=\vec{x}^{T} A \vec{x}
$$

gives a curve in \mathbb{R}^{2}.

Principle Axes Theorem

Proof (if time permits):

Classifying Quadratic Forms

Definition
A quadratic form Q is
positive definite if \qquad for all $\vec{x} \neq \overrightarrow{0}$.
negative definite if \qquad for all $\vec{x} \neq \overrightarrow{0}$.
3. positive semidefinite if \qquad for all \vec{x}.
negative semidefinite if \qquad for all \vec{x}.
5. indefinite if \qquad Slide 371

Example 5
Compute the quadratic form $Q=\vec{x}^{T} A \vec{x}$ for $A=\left(\begin{array}{ll}5 & 2 \\ 2 & 8\end{array}\right)$, and find a
change of variable that removes the cross-product term. A sketch of Q is below.

Quadratic Forms and Eigenvalues

Proof (if time permits):

Example 6

We can now return to our motivating question (from first slide): does this inequality hold for all x, y ?

$$
x^{2}-6 x y+9 y^{2} \geq 0
$$

Section 7.3 : Constrained Optimization

Chapter 7: Orthogonality and Least Squares
Math 1554 Linear Algebra

Section 7.3 Slide 374

Topics and Objectives

Topics

1. Constrained optimization as an eigenvalue problem
2. Distance and orthogonality constraints

Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems that are subject to distance and orthogonality constraints.

Example 1

The surface of a unit sphere in \mathbb{R}^{3} is given by

$$
1=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\|\vec{x}\|^{2}
$$

Q is a quantity we want to optimize

$$
Q(\vec{x})=9 x_{1}^{2}+4 x_{2}^{2}+3 x_{3}^{2}
$$

Find the largest and smallest values of Q on the surface of the sphere.

A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

$$
Q(\vec{x})=\vec{x}^{T} A \vec{x}
$$

subject to

$$
\|\vec{x}\|=1
$$

That is, we want to find

$$
\begin{aligned}
m & =\min \{Q(\vec{x}):\|\vec{x}\|=1\} \\
M & =\max \{Q(\vec{x}):\|\vec{x}\|=1\}
\end{aligned}
$$

This is an example of a constrained optimization problem. Note that we may also want to know where these extreme values are obtained.

Example 2

Calculate the maximum and minimum values of $Q(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\|\vec{x}\|=1$, and identify points where these values are obtained.

$$
Q(\vec{x})=x_{1}^{2}+2 x_{2} x_{3}
$$

Constrained Optimization and Eigenvalues

Theorem
If $Q=\vec{x}^{T} A \vec{x}, A$ is a real $n \times n$ symmetric matrix, with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}
$$

and associated normalized eigenvectors

$$
\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}
$$

Then, subject to the constraint $\|\vec{x}\|=1$,

- the maximum value of $Q(\vec{x})=\lambda_{1}$, attained at $\vec{x}= \pm \vec{u}_{1}$.
- the minimum value of $Q(\vec{x})=\lambda_{n}$, attained at $\vec{x}= \pm \vec{u}_{n}$.

Proof:

Example 2

The image below is the unit sphere whose surface is colored according to the quadratic from the previous example. Notice the agreement between our solution and the image.

An Orthogonality Constraint

Theorem
Suppose $Q=\vec{x}^{T} A \vec{x}, A$ is a real $n \times n$ symmetric matrix, with eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{n}
$$

and associated eigenvectors

$$
\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}
$$

Subject to the constraints $\|\vec{x}\|=1$ and $\vec{x} \cdot \vec{u}_{1}=0$,

- The maximum value of $Q(\vec{x})=\lambda_{2}$, attained at $\vec{x}=\vec{u}_{*}$.
- The minimum value of $Q(\vec{x})=\lambda_{n}$, attained at $\vec{x}=\vec{u}_{n}$.

Note that λ_{2} is the second largest eigenvalue of A.

Example 3

Calculate the maximum value of $Q(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\|\vec{x}\|=1$ and to $\vec{x} \cdot \vec{u}_{1}=0$, and identify a point where this maximum is obtained.

$$
Q(\vec{x})=x_{1}^{2}+2 x_{2} x_{3}, \quad \vec{u}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Example 4 (if time permits)

Calculate the maximum value of $Q(\vec{x})=\vec{x}^{T} A \vec{x}, \vec{x} \in \mathbb{R}^{3}$, subject to $\|\vec{x}\|=5$, and identify a point where this maximum is obtained.

$$
Q(\vec{x})=x_{1}^{2}+2 x_{2} x_{3}
$$

Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares
Math 1554 Linear Algebra

Topics and Objectives

Topics

1. The Singular Value Decomposition (SVD) and some of its applications.

Learning Objectives

1. Compute the SVD for a rectangular matrix.
2. Apply the SVD to

- estimate the rank and condition number of a matrix,
- construct a basis for the four fundamental spaces of a matrix, and
- construct a spectral decomposition of a matrix.

Example 1

The linear transform whose standard matrix is

$$
A=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
2 \sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right)=\left(\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right)
$$

maps the unit circle in \mathbb{R}^{2} to an ellipse, as shown below. Identify the unit vector \vec{x} in which $\|A \vec{x}\|$ is maximized and compute this length.

Singular Values

The matrix $A^{T} A$ is always symmetric, with non-negative eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. Let $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be the associated orthonormal eigenvectors. Then

$$
\left\|A \vec{v}_{j}\right\|^{2}=
$$

If the A has rank r, then $\left\{A \vec{v}_{1}, \ldots, A \vec{v}_{r}\right\}$ is an orthogonal basis for $\operatorname{Col} A$: For $1 \leq j<k \leq r$:

$$
\left(A \vec{v}_{j}\right)^{T} A \vec{v}_{k}=
$$

Definition: $\sigma_{1}=\sqrt{\lambda_{1}} \geq \sigma_{2}=\sqrt{\lambda_{2}} \cdots \geq \sigma_{n}=\sqrt{\lambda_{n}}$ are the singular values of A.

The SVD

$$
\begin{aligned}
& \text { Theorem: Singular Value Decomposition } \\
& \text { A } m \times n \text { matrix with rank } r \text { and non-zero singular values } \sigma_{1} \geq \\
& \sigma_{2} \geq \cdots \geq \sigma_{r} \text { has a decomposition } U \Sigma V^{T} \text { where } \\
& \Sigma \Sigma=\left[\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right]_{m \times n}=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & \ldots & 0 & \\
0 & \sigma_{2} & \ldots & \vdots & 0 \\
\vdots & \vdots & \ddots & & \\
0 & 0 & \ldots & \sigma_{r} & \\
& 0 & & & 0
\end{array}\right] \\
& U \text { is a } m \times m \text { orthogonal matrix, and } V \text { is a } n \times n \text { orthogonal } \\
& \text { matrix. }
\end{aligned}
$$

Algorithm to find the SVD of A

Suppose A is $m \times n$ and has rank $r \leq n$.

1. Compute the squared singular values of $A^{T} A, \sigma_{i}^{2}$, and construct Σ.
2. Compute the unit singular vectors of $A^{T} A, \vec{v}_{i}$, use them to form V.
3. Compute an orthonormal basis for $\operatorname{Col} A$ using

$$
\vec{u}_{i}=\frac{1}{\sigma_{i}} A \vec{v}_{i}, \quad i=1,2, \ldots r
$$

Extend the set $\left\{\vec{u}_{i}\right\}$ to form an orthonomal basis for \mathbb{R}^{m}, use the basis for form U.

Example 3: Construct the singular value decomposition of
$A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2 \\ 2 & -2\end{array}\right]$
(It has rank 1.)

Applications of the SVD

The SVD has been applied to many modern applications in CS, engineering, and mathematics (our textbook mentions the first four).

- Estimating the rank and condition number of a matrix
- Constructing bases for the four fundamental spaces
- Computing the pseudoinverse of a matrix
- Linear least squares problems
- Non-linear least-squares
https://en.wikipedia.org/wiki/Non-linear_least_squares
- Machine learning and data mining
https://en.wikipedia.org/wiki/K-SVD
- Facial recognition
https://en.wikipedia.org/wiki/Eigenface
- Principle component analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
- Image compression

Students are expected to be familiar with the $1^{\text {st }}$ two items in the list.

The Condition Number of a Matrix

If A is an invertible $n \times n$ matrix, the ratio

$$
\frac{\sigma_{1}}{\sigma_{n}}
$$

is the condition number of A.
Note that:

- The condition number of a matrix describes the sensitivity of a solution to $A \vec{x}=\vec{b}$ is to errors in A.
- We could define the condition number for a rectangular matrix, but that would go beyond the scope of this course

Example 4
For $A=U \Sigma V^{*}$, determine the rank of A, and orthonormal bases for Null A and $(\operatorname{Col} A)^{\perp}$.
$\mathbf{U}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0\end{array}\right]$
$\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}4 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\mathbf{V}^{*}=\left[\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \sqrt{0.2} & 0 & 0 & 0 & \sqrt{0.8} \\ 0 & 0 & 0 & 1 & 0 \\ -\sqrt{0.8} & 0 & 0 & 0 & \sqrt{0.2}\end{array}\right]$

The Four Fundamental Spaces

1. $A \vec{v}_{s}=\sigma_{s} \vec{u}_{s}$.
2. $\vec{v}_{1}, \ldots, \vec{v}_{r}$ is an orthonormal basis for Row A.
3. $\vec{u}_{1}, \ldots, \vec{u}_{r}$ is an orthonormal basis for $\operatorname{Col} A$.
4. $\vec{v}_{r+1}, \ldots, \vec{v}_{n}$ is an orthonormal basis for Null A.
5. $\vec{u}_{r+1}, \ldots, \vec{u}_{n}$ is an orthonormal basis for Null A^{T}.

The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for any matrix with rank r

$$
A=\sum_{s=1}^{r} \sigma_{s} \vec{u}_{s} \vec{v}_{s}^{T}
$$

where \vec{u}_{s}, \vec{v}_{s} are the $s^{t h}$ columns of U and V respectively.
For the case when $A=A^{T}$, we obtain the same spectral decomposition that we encountered in Section 7.2.

[^0]: Theorem (Least Squares and $Q R$)
 Let $m \times n$ matrix A have a $Q R$ decomposition. Then for each $\vec{b} \in \mathbb{R}^{m}$ the equation $A \vec{x}=\vec{b}$ has the unique least squares solution

 $$
 R \widehat{x}=Q^{T} \vec{b} .
 $$

 (Remember, R is upper triangular, so the equation above is solved by back-substitution.)

