
Section 5.3 : Diagonalization

Chapter 5 : Eigenvalues and Eigenvectors

Math 1554 Linear Algebra

Motivation: it can be useful to take large powers of matrices, for example
Ak, for large k.

But: multiplying two n⇥ n matrices requires roughly n3 computations. Is
there a more e�cient way to compute Ak?
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Topics and Objectives

Topics

1. Diagonal, similar, and diagonalizable matrices

2. Diagonalizing matrices

Learning Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Determine whether a matrix can be diagonalized, and if possible
diagonalize a square matrix.

2. Apply diagonalization to compute matrix powers.
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Diagonal Matrices

A matrix is diagonal if the only non-zero elements, if any, are on the
main diagonal.

The following are all diagonal matrices.


2 0
0 2

�
,

⇥
2
⇤
, In,


0 0
0 0

�

We’ll only be working with diagonal square matrices in this course.
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Powers of Diagonal Matrices

If A is diagonal, then Ak is easy to compute. For example,

A =

✓
3 0
0 0.5

◆

A2 =

Ak =

But what if A is not diagonal?
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Diagonalization

Suppose A 2 Rn⇥n. We say that A is diagonalizable if it is similar to a
diagonal matrix, D. That is, we can write

A = PDP�1
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Diagonalization

If A is diagonalizable , A has n linearly independent eigenvectors.

Theorem

Note: the symbol , means “ if and only if ”.

Also note that A = PDP�1 if and only if

A = [~v1 ~v2 · · ·~vn]

2

6664

�1

�2

. . .
�n

3

7775
[~v1 ~v2 · · ·~vn]�1

where ~v1, . . . ,~vn are linearly independent eigenvectors, and �1, . . . ,�n

are the corresponding eigenvalues (in order).
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Example 1

Diagonalize if possible.
✓
2 6
0 �1

◆
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Example 2

Diagonalize if possible.
✓
3 1
0 3

◆
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Distinct Eigenvalues

If A is n ⇥ n and has n distinct eigenvalues, then A is
diagonalizable.

Theorem

Why does this theorem hold?

Is it necessary for an n⇥ n matrix to have n distinct eigenvalues for it to
be diagonalizable?
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Non-Distinct Eigenvalues

Theorem. Suppose

• A is n⇥ n

• A has distinct eigenvalues �1, . . . ,�k, k  n

• ai = algebraic multiplicity of �i

• di = dimension of �i eigenspace (“geometric multiplicity”)

Then

1. di  ai for all i

2. A is diagonalizable , ⌃di = n , di = ai for all i

3. A is diagonalizable , the eigenvectors, for all eigenvalues, together
form a basis for Rn.
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Example 3

The eigenvalues of A are � = 3, 1. If possible, construct P and D such
that AP = PD.

A =

0

@
7 4 16
2 5 8
�2 �2 �5

1

A
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Additional Example (if time permits)

Note that

~xk =


0 1
1 1

�
~xk�1, ~x0 =


1
1

�
, k = 1, 2, 3, . . .

generates a well-known sequence of numbers.

Use a diagonalization to find a matrix equation that gives the nth

number in this sequence.
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Chapter 10 : Finite-State Markov Chains

10.2 : The Steady-State Vector and Page Rank
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Topics and Objectives

Topics

1. Review of Markov chains

2. Theorem describing the steady state of a Markov chain

3. Applying Markov chains to model website usage.

4. Calculating the PageRank of a web.

Learning Objectives

1. Determine whether a stochastic matrix is regular.

2. Apply matrix powers and theorems to characterize the long-term
behaviour of a Markov chain.

3. Construct a transition matrix, a Markov Chain, and a Google Matrix
for a given web, and compute the PageRank of the web.
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Where is Chapter 10?

• The material for this part of the course is covered in Section 10.2
• Chapter 10 is not included in the print version of the book, but it is
in the on-line version.

• If you read 10.2, and I recommend that you do, you will find that it
requires an understanding of 10.1.

• You are not required to understand the material in 10.1.

Other sources that you may find helpful are listed below.
1. PageRank Algorithm (Math Explorer’s Club, Cornell Univ.)

http://www.math.cornell.edu/~mec/Winter2009/
RalucaRemus/Lecture3/lecture3.html

2. Austin, D. How Google Finds Your Needle in the Web’s Haystack.
Available at: http:
//www.ams.org/samplings/feature-column/fcarc-pagerank

3. Bryan, K., Leise, T. The $25,000,000,000 Eigenvector: The Linear

Algebra behind Google. SIAM Review, 48(3). Available at:
http://userpages.umbc.edu/~kogan/teaching/m430/
GooglePageRank.pdf
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Steady State Vectors

Recall the car rental problem from our Section 4.9 lecture.

A car rental company has 3 rental locations, A, B, and C.

rented from
A B C

returned to
A .8 .1 .2
B .2 .6 .3
C .0 .3 .5

There are 10 cars at each location today, what happens to the distri-
bution of cars after a long time?

Problem
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Long Term Behaviour

Can use the transition matrix, P , to find the distribution of cars after 1
week:

~x1 = P~x0

The distribution of cars after 2 weeks is:

~x2 = P~x1 =

The distribution of cars after n weeks is:
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Long Term Behaviour

To investigate the long-term behaviour of a system that has a regular
transition matrix P , we could:

1. compute Pn~x0 for large n.

2. compute the steady-state vector, ~q, by solving ~q = P~q.

To solve PageRank problems, we will rely on the first approach.
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Theorem 1

If P is a regular m⇥m transition matrix with m � 2, then the following
statements are all true.

1. There is a stochastic matrix ⇧ such that

lim
n!1

Pn = ⇧

2. Each column of ⇧ is the same probability vector ~q.

3. For any initial probability vector ~x0,

lim
n!1

Pn~x0 = ~q

4. P has a unique eigenvector, ~q, which has eigenvalue � = 1.

5. The eigenvalues of P satisfy |�|  1.

We will apply this theorem when solving PageRank problems.
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Example 1

Suppose we have 4 web pages that link to each other according to this
diagram.

1 2

3 4 5

Page 1 has links to pages .

Page 2 has links to pages .

If a user on a page in this web is equally likely to go to any of the pages
that their page links to, construct a Markov chain that represents how
users navigate this web.
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Transition Matrix, Importance, and PageRank

• The square matrix we constructed in the previous example is a
transition matrix. It describes how users transition between pages
in the web.

• The steady-state vector, ~q, for the Markov-chain, can characterize
the long-term behavior of users in a given web.

• If ~q is unique, the importance of a page in a web is given by its
corresponding entry in ~q.

• The PageRank is the ranking assigned to each page based on its
importance. The highest ranked page has PageRank 1, the second
PageRank 2, and so on.

Is the transition matrix in Example 1 a regular matrix?
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Adjustment 1

If a user reaches a page that doesn’t link to other pages, then
the user will choose any page in the web, with equal probability,
and move to that page.

Adjustment 1

Let’s denote this modified transition matrix as P⇤. Our transition matrix
in Example 1 becomes:
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Adjustment 2

A user at any page will navigate any page among those that
their page links to with equal probability p, and to any page
in the web with equal probability 1� p. The transition matrix
becomes

G = pP⇤ + (1� p)K

All the elements of the n⇥ n matrix K are equal to 1/n.

Adjustment 2

p is referred to as the damping factor, Google is said to use p = 0.85.

With adjustments 1 and 2, our the Google matrix is:
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Computing Page Rank

• Because G is stochastic, for any initial probability vector ~x0,

lim
n!1

Gn~x0 = ~q

• In practice we can compute the page rank for each page in the web
by evaluating:

Gn~x0

for large n. The elements of the resulting vector give the page ranks
of each page in the web.

On a MATH 1554 exam,

• problems that require a calculator will not be on your exam

• you may construct your G matrix using factions instead of decimal
expansions
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Example 2 (if time permits)

Construct the Google Matrix for the web below (your instructor would
provide the web).

Section 10.2 Slide 270

There is (of course) Much More to PageRank

The PageRank Algorithm
currently used by Google
is under constant
development, and tailored
to individual users.

• When PageRank was devised, in 1996,
Yahoo! used humans to provide a ”index
for the Internet, ” which was 10 million
pages.

• The PageRank algorithm was produced as
a competing method. The patent was
awarded to Stanford University, and
exclusively licensed to the newly formed
Google corporation.

• Brin and Page combined the PageRank
algorithm with a webcrawler to provide
regular updates to the transition matrix for
the web.

• The explosive growth of the web soon
overwhelmed human based approaches to
searching the internet.
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WolframAlpha and MATLAB Syntax for Matrix Powers

Suppose we want to compute

0

@
.8 .1 .2
.2 .6 .3
.0 .3 .5

1

A
10

At wolframalpha.com, we can use the syntax:

MatrixPower[{{.8,.1,.2},{.2,.6,.3},{.0,.3,.5}},10]

In MATLAB, we can use the syntax:

[.8 .1 .2 ;.2 .6 .3;.0 .3 .5].^10

You will need to compute a few matrix powers in your MML homework,
and in your future courses, depending on what courses you end up taking.
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Chapter 5 : Eigenvalues and Eigenvectors

5.5 : Complex Eigenvalues
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Topics and Objectives

Topics

1. Complex numbers: addition, multiplication, complex conjugate

2. Diagonalizing matrices with complex eigenvalues

3. Eigenvalue theorems

Learning Objectives

1. Diagonalize 2⇥ 2 matrices that have complex eigenvalues.

2. Use eigenvalues to determine identify the rotation and dilation of a
linear transform.

3. Apply theorems to characterize matrices with complex eigenvalues.

Motivating Question

What are the eigenvalues of a rotation matrix?
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Imaginary Numbers

Recall: When calculating roots of polynomials, we can encounter square
roots of negative numbers. For example:

x2 + 1 = 0

The roots of this equation are:

We usually write
p
�1 as i (for “imaginary”).
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Addition and Multiplication

The imaginary (or complex) numbers are denoted by C, where

C = {a+ bi | a, b in R}

We can identify C with R2: a+ bi $ (a, b)

We can add and multiply complex numbers as follows:

(2� 3i) + (�1 + i) =

(2� 3i)(�1 + i) =
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Complex Conjugate, Absolute Value, Polar Form

We can conjugate complex numbers: a+ bi =

The absolute value of a complex number: |a+ bi| =

We can write complex numbers in polar form: a+ ib = r(cos�+ i sin�)
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Complex Conjugate Properties

If x and y are complex numbers, ~v 2 Cn, it can be shown that:

• (x+ y) = x+ y

• A~v = A~v

• Im(xx) = 0.

Example True or false: if x and y are complex numbers, then

(xy) = x y
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Polar Form and the Complex Conjugate

Conjugation reflects points across the real axis.

Re(z)

Im(z) z = x+ iy

z̄ = x� iy

��

�

O
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Euler’s Formula

Suppose z1 has angle �1, and z2 has angle �2.

Re(z)

Im(z)

z1z2

z3

�1

�2

O

The product z1z2 has angle �1 + �2 and modulus |z| |w|. Easy to
remember using Euler’s formula.

z = |z| ei�

The product z1z2 is:

z3 = z1z2 = (|z1| ei�1)(|z2|ei�2) = |z1| |z2| ei(�1+�2)
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Complex Numbers and Polynomials

Every polynomial of degree n has exactly n complex roots, counting
multiplicity.

Theorem: Fundamental Theorem of Algebra

1. If � 2 C is a root of a real polynomial p(x), then the conjugate
� is also a root of p(x).

2. If � is an eigenvalue of real matrix A with eigenvector ~v, then �
is an eigenvalue of A with eigenvector ~v.

Theorem
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Example

Four of the eigenvalues of a 7⇥ 7 matrix are �2, 4 + i,�4� i, and i.
What are the other eigenvalues?
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Example

The matrix that rotates vectors by � = ⇡/4 radians about the origin, and
then scales (or dilates) vectors by r =

p
2, is

A =


r 0
0 r

� 
cos� � sin�
sin� cos�

�
=


1 �1
1 1

�

What are the eigenvalues of A? Express them in polar form.

Section 5.5 Slide 254

Example

The matrix in the previous example is a special case of this matrix:

C =

✓
a �b
b a

◆

Calculate the eigenvalues of C and express them in polar form.
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Diagonalization

Let A be a real 2 ⇥ 2 matrix with a complex eigenvalue
� = a � bi (where b 6= 0) and associated eigenvector ~v.
Then we may construct the diagonalization

A = PCP�1

where

P = (Re~v Im~v) and C =

✓
a �b
b a

◆

Theorem

Note the following.

• C is referred to as a rotation dilation matrix, because it is the
composition of a rotation by � and dilation by r.

• The proof for why the columns of P are always linearly independent
is a bit long, it goes beyond the scope of this course.
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Example

If possible, construct matrices P and C such that AP = PC.

A =

✓
1 �2
1 3

◆
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Topics and Objectives

Topics

1. Dot product of vectors

2. Magnitude of vectors, and distances in Rn

3. Orthogonal vectors and complements

4. Angles between vectors

Learning Objectives

1. Compute (a) dot product of two vectors, (b) length (or magnitude)
of a vector, (c) distance between two points in Rn, and (d) angles
between vectors.

2. Apply theorems related to orthogonal complements, and their
relationships to Row and Null space, to characterize vectors and
linear systems.

Motivating Question

For a matrix A, which vectors are orthogonal to all the rows of A? To
the columns of A?
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The Dot Product

~u · ~v =
⇥
u1 u2 · · · un

⇤

2

6664

v1
v2
...

vn

3

7775
= u1v1 + u2v2 + · · ·+ unvn.

Example 1: For what values of k is ~u · ~v = 0?

~u =

0

BB@

�1
3
k
2

1

CCA , ~v =

0

BB@

4
2
1
�3

1

CCA
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Properties of the Dot Product

The dot product is a special form of matrix multiplication, so it inherits
linear properties.

Let ~u,~v, ~w be three vectors in Rn, and c 2 R.

1. (Symmetry) ~u · ~w =

2. (Linear in each vector) (~v + ~w) · ~u =

3. (Scalars) (c~u) · ~w =

4. (Positivity) ~u · ~u � 0, and the dot product equals

Theorem (Basic Identities of Dot Product)
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The Length of a Vector

The length of a vector ~u 2 Rn is

k~uk =
p
~u · ~u =

q
u2
1 + u2

2 + · · ·+ u2
n

Definition

Example: the length of the vector
��!
OP is

p
12 + 32 + 22 =

p
14

O
x2

x3

x1

P (1, 3, 2)

31
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Example

Let ~u,~v be two vectors in Rn with k~uk = 5, k~vk =
p
3, and ~u · ~v = �1.

Compute the value of k~u+ ~vk.
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Length of Vectors and Unit Vectors

Note: for any vector ~v and scalar c, the length of c~v is

kc~vk =

If ~v 2 Rn has length one, we say that it is a unit vector.

Definition

Example: Let W be a subspace of R4 spanned by

~v =

2

664

�1
�3
�2
1

3

775

a) Construct a unit vector ~u in the same direction as ~v.

b) Construct a basis for W using unit vectors.

Section 6.1 Slide 279

Distance in Rn

For ~u,~v 2 Rn, the distance between ~u and ~v is given by the formula

Definition

Example: Compute the distance from ~u =

✓
7
1

◆
and ~v =

✓
3
2

◆
.

~u

~v
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Orthogonality

Two vectors ~u and ~w are orthogonal if ~u · ~w = 0. This
is equivalent to:

k~u+ ~wk2 =

Definition (Orthogonal Vectors)

Note: The zero vector is orthogonal to every vector. But we usually only
mean non-zero vectors.
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Example

Sketch the subspace spanned by the set of all vectors ~u that are

orthogonal to ~v =

✓
3
2

◆
.

x1

x2

~v
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Orthogonal Compliments

Let W be a subspace of Rn. A vector ~z 2 Rn is said to be
orthogonal to W if ~z is orthogonal to each vector in W .

The set of all vectors orthogonal to W is a subspace, the orthog-

onal compliment of W , or W? or ‘W perp.’

W? = {~z 2 Rn : ~z · }

Definitions
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Example

Line L is a subspace of R3 spanned by ~v =

0

@
1
�1
2

1

A. Then the space L?

is a plane. Construct an equation of the plane L?.

x

y

z

L

~v

1

�1

Can also visualise line and plane with CalcPlot3D: web.monroecc.edu/calcNSF
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RowA

RowA is the space spanned by the rows of matrix A.

Definition

We can show that

• dim(Row(A)) = dim(Col(A))

• a basis for RowA is the pivot rows of A
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Example

Describe the Null(A) in terms of an orthogonal subspace.

A vector ~x is in NullA if and only if

1. A~x =

2. This means that ~x is to each row of A.

3. RowA is to NullA.

4. The dimension of RowA plus the dimension of NullA equals
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For any A 2 Rm⇥n, the orthogonal complement of RowA is
NullA, and the orthogonal complement of ColA is NullAT .

Theorem (The Four Subspaces)

The idea behind this theorem is described in the diagram below.

Row(A)

Null(A)

Col(A)

Null(AT )

Rn Rm
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Additional Example (if time permits)

A has the LU factorization:

A = LU =

0

@
1 0 0
1 1 0
0 4 1

1

A

0

@
1 0 2 0
0 1 �1 2
0 0 0 0

1

A

a) Construct a basis for (RowA)?

b) Construct a basis for (ColA)?

Hint: it is not necessary to compute A. Recall that AT = UTLT
, matrix

LT
is invertible, and UT

has a non-empty nullspace.
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Angles

~a ·~b = |~a| |~b| cos ✓. Thus, if ~a ·~b = 0, then:

• ~a and/or ~b are vectors, or

• ~a and ~b are .

Theorem

For example, consider the vectors below.

~b

~a~c

✓
�

Section 6.1 Slide 289

Looking Ahead - Projections

Suppose we want to find the closed vector in Span{~b} to ~a.

Span{~b}~b

~a

â =proj~b~a

• Later in this Chapter, we will make connections between dot
products and projections.

• Projections are also used throughout multivariable calculus courses.
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Section 6.2 : Orthogonal Sets

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Orthogonal Sets of Vectors

2. Orthogonal Bases and Projections.

Learning Objectives

1. Apply the concepts of orthogonality to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) characterize bases for subspaces of Rn, and
d) construct orthonormal bases.

Motivating Question

What are the special properties of this basis for R3?
2

4
3
1
1

3

5 /
p
11,

2

4
�1
2
1

3

5 /
p
6,

2

4
�1
�4
7

3

5 /
p
66
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Orthogonal Vector Sets

A set of vectors {~u1, . . . , ~up} are an orthogonal set of vectors
if for each j 6= k, ~uj ? ~uk.

Definition

Example: Fill in the missing entries to make {~u1, ~u2, ~u3} an orthogonal
set of vectors.

~u1 =

2

4
4
1
1

3

5 , ~u2 =

2

4
�2
1

3

5 , ~u3 =

2

4

3

5
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Linear Independence

Let {~u1, . . . , ~up} be an orthogonal set of vectors. Then, for
scalars c1, . . . , cp,

��c1~u1 + · · ·+ cp~up

��2 = c21k~u1k2 + · · ·+ c2pk~upk2.

In particular, if all the vectors ~ur are non-zero, the set of vectors
{~u1, . . . , ~up} are linearly independent.

Theorem (Linear Independence for Orthogonal Sets)
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Orthogonal Bases

Let {~u1, . . . , ~up} be an orthogonal basis for a subspace W of
Rn. Then, for any vector ~w 2 W ,

~w = c1~u1 + · · ·+ cp~up.

Above, the scalars are cq =
~w · ~uq

~uq · ~uq
.

Theorem (Expansion in Orthogonal Basis)

For example, any vector ~w 2 R3 can be written as a linear combination
of {~e1,~e2,~e3}, or some other orthogonal basis {~u1, ~u2, ~u3}.

~e1 ~e2

~e3

~u1 ~u2

~u3
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Example

~x =

0

@
1
1
1

1

A , ~u =

0

@
1
�2
1

1

A , ~v =

0

@
�1
0
1

1

A , ~s =

0

@
3
�4
1

1

A

Let W be the subspace of R3 that is orthogonal to ~x.

a) Check that an orthogonal basis for W is given by ~u and ~v.

b) Compute the expansion of ~s in basis W .
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Projections

Let ~u be a non-zero vector, and let ~v be some other vector. The
orthogonal projection of ~v onto the direction of ~u is the vector in the
span of ~u that is closest to ~v.

proj~u~v =
~v · ~u
~u · ~u~u.

The vector ~w = ~v � proj~u~v is
orthogonal to ~u, so that

~v = proj~u~v + ~w

k~vk2 = kproj~u~vk2 + k~wk2
Span{~u}

~u

~v

proj~u~v

~w
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Example

Let L be spanned by (1, 1, 1, 1) in R4.

1. Find the projection of ~v = (�3, 5, 6,�4) onto the line L.

2. How close is ~v to the line L?
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Definition

An orthonormal basis for a subspace W is an orthogonal basis
{~u1, . . . , ~up} in which every vector ~uq has unit length. In this
case, for each ~w 2 W ,

~w = [(~w) · ~u1]~u1 + · · ·+ [(~w) · ~up]~up

k~wk =
q

[(~w) · ~u1]2 + · · ·+ [(~w) · ~up]2

Definition (Orthonormal Basis)
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Example

The subspace W is a subspace of R3 perpendicular to (1, 1, 1). Calculate
the missing coe�cients in the orthonormal basis for W .

2

4
1
0

3

5 /
p

2

4

3

5 /
p
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Orthogonal Matrices

An orthogonal matrix is a square matrix whose columns are
orthonormal.

An m⇥n matrix U has orthonormal columns if and only if UTU = In.

Theorem

Note that this theorem does not apply when n > m. Why?
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Theorem

Assume m⇥m matrix U has orthonormal columns. Then

1. (Preserves length) kU~xk =

2. (Preserves angles) (U~x) · (U~y) =

3. (Preserves orthogonality)

Theorem (Mapping Properties of Orthogonal Matrices)
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Example

Compute the length of the vector below.
2

664

1/2 2/
p
14

1/2 1/
p
14

1/2 �3/
p
14

1/2 0

3

775

p
2

�3

�
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Additional Example (if time permits)

A 4⇥ 4 orthonormal matrix is below. It’s columns are orthonormal.

A =

2

664

1/2 2/
p
10 1/2 1/

p
10

1/2 1/
p
10 �1/2 �2/

p
10

1/2 �1/
p
10 �1/2 2/

p
10

1/2 �2/
p
10 1/2 �1/

p
10

3

775

Verify that the rows also form an orthonormal basis.
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Section 6.3 : Orthogonal Projections

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~e1

~e2

~y

ŷ 2 Span{~e1,~e2} = W

Vectors ~e1 and ~e2 form an orthonormal basis for subspace W .
Vector ~y is not in W .

The orthogonal projection of ~y onto W =Span{~e1,~e2} is ŷ.
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Topics and Objectives

Topics

1. Orthogonal projections and their basic properties
2. Best approximations

Learning Objectives

1. Apply concepts of orthogonality and projections to
a) compute orthogonal projections and distances,
b) express a vector as a linear combination of orthogonal vectors,
c) construct vector approximations using projections,
d) characterize bases for subspaces of Rn, and
e) construct orthonormal bases.

Motivating Question For the matrix A and vector ~b, which vector bb in
column space of A, is closest to ~b?

A =

2

4
1 2
3 0
�4 �2

3

5 , ~b =

2

4
1
1
1

3

5
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Example 1

Let ~u1, . . . , ~u5 be an orthonormal basis for R5. Let W = Span{~u1, ~u2}.
For a vector ~y 2 R5, write ~y = by + w?, where by 2 W and w? 2 W?.
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Orthogonal Decomposition Theorem

Let W be a subspace of Rn. Then, each vector ~y 2 Rn has the
unique decomposition

~y = by + w?, by 2 W, w? 2 W?.

And, if ~u1, . . . , ~up is any orthogonal basis for W ,

ŷ =
~y · ~u1

~u1 · ~u1
~u1 + · · ·+ ~y · ~up

~up · ~up
~up.

We say that by is the orthogonal projection of ~y onto W .

Theorem

If time permits, we will prove this theorem on the next slide.
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Proof (if time permits)

We can write

by =

Then, w? = ~y � by is in W? because

Uniqueness:
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Example 2a

~y =

0

@
�1
2
6

1

A , ~u1 =

0

@
3
�1
2

1

A , ~u2 =

0

@
1
�1
�2

1

A

Construct the decomposition ~y = by + w?, where by is the orthogonal
projection of ~y onto the subspace W = Span{~u1, ~u2}.
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Best Approximation Theorem

Let W be a subspace of Rn, ~y 2 Rn, and by is the orthogonal
projection of ~y onto W . Then for any ~w 6= ŷ 2 W , we have

k~y � byk < k~y � ~wk

That is, by is the unique vector in W that is closest to ~y.

Theorem
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Proof (if time permits)

The orthogonal projection of ~y onto W is the closest point in W to ~y.

~y

by 2 W

~v 2 WW
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Example 2b

~y =

0

@
�1
2
6

1

A , ~u1 =

0

@
3
�1
2

1

A , ~u2 =

0

@
1
�1
�2

1

A

What is the distance between ~y and subspace W = Span{~u1, ~u2}? Note
that these vectors are the same vectors that we used in Example 2a.
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Additional Example (if time permits)

Indicate whether each statement is true or false. If true, explain why in
one or two sentences. If false, give a counter example or explain why in
one or two sentences.

a) If ~x is orthogonal to ~v and ~w, then ~x is also orthogonal to ~v � ~w.

b) If projW~y = ~y, then ~y 2 W .

c) If ~y = ~u1 + ~v1, where ~u1 2 W and ~v1 2 W?, then ~u1 is the
orthogonal projection of ~y onto W .
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Section 6.4 : The Gram-Schmidt Process

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

~x1

~x2

~x3

~q1

~q2
~q3

Vectors ~x1, ~x2, ~x3 are given linearly independent vectors. We wish to construct
an orthonormal basis {~q1, ~q2, ~q3} for the space that they span.
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Topics and Objectives

Topics

1. Gram Schmidt Process

2. The QR decomposition of matrices and its properties

Learning Objectives

1. Apply the iterative Gram Schmidt Process, and the QR
decomposition, to construct an orthogonal basis.

2. Compute the QR factorization of a matrix.

Motivating Question The vectors below span a subspace W of R4.
Identify an orthogonal basis for W .

~x1 =

2

664

1
1
1
1

3

775 , ~x2 =

2

664

0
1
1
1

3

775 , ~x3 =

2

664

0
0
1
1

3

775 .
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Example

The vectors below span a subspace W of R4. Construct an orthogonal
basis for W .

~x1 =

2

664

1
1
1
1

3

775 , ~x2 =

2

664

0
1
1
1

3

775 , ~x3 =

2

664

0
0
1
1

3

775 .
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The Gram-Schmidt Process

Given a basis {~x1, . . . , ~xp} for a subspace W of Rn, iteratively define

~v1 = ~x1

~v2 = ~x2 �
~x2 · ~v1
~v1 · ~v1

~v1

~v3 = ~x3 �
~x3 · ~v1
~v1 · ~v1

~v1 �
~x3 · ~v2
~v2 · ~v2

~v2

...

~vp = ~xp �
~xp · ~v1
~v1 · ~v1

~v1 � · · ·� ~xp · ~vp�1

~vp�1 · ~vp�1
~vp�1

Then, {~v1, . . . ,~vp} is an orthogonal basis for W .
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Proof
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Geometric Interpretation

Suppose ~x1, ~x2, ~x3 are linearly independent vectors in R3. We wish to
construct an orthogonal basis for the space that they span.

~x1
= ~v1

~x2

~x3

~v2

~v3

projW2~x3

W1

W2

We construct vectors ~v1,~v2,~v3, which form our orthogonal basis.
W1 = Span{~v1}, W2 = Span{~v1,~v2}.
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Orthonormal Bases

A set of vectors form an orthonormal basis if the vectors are
mutually orthogonal and have unit length.

Definition

Example

The two vectors below form an orthogonal basis for a subspace W .
Obtain an orthonormal basis for W .

~v1 =

2

4
3
2
0

3

5 , ~v2 =

2

4
�2
3
1

3

5 .

Section 6.4 Slide 321

QR Factorization

Any m ⇥ n matrix A with linearly independent columns has the QR

factorization

A = QR

where
1. Q is m⇥ n, its columns are an orthonormal basis for ColA.

2. R is n⇥ n, upper triangular, with positive entries on its
diagonal, and the length of the jth column of R is equal to the
length of the jth column of A.

Theorem

In the interest of time:

• we will not consider the case where A has linearly dependent
columns

• students are not expected to know the conditions for which A has a
QR factorization

Section 6.4 Slide 322

Proof
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Examples (if time permits)

Construct the QR decomposition for A.

a) A =

2

4
3 �2
2 3
0 1

3

5

b) A =

2

664

1 0 0
1 1 0
1 1 1
1 1 1

3

775
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Section 6.5 : Least-Squares Problems

Chapter 6 : Orthogonality and Least Squares

Math 1554 Linear Algebra

https://xkcd.com/1725
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Topics and Objectives

Topics

1. Least Squares Problems

2. Di↵erent methods to solve Least Squares Problems

Learning Objectives

1. Compute general solutions, and least squares errors, to least squares
problems using the normal equations and the QR decomposition.

Motivating Question A series of measurements are corrupted by
random errors. How can the dominant trend be extracted from the
measurements with random error?
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Inconsistent Systems

Suppose we want to construct a line of the form

y = mx+ b

that best fits the data below.

x

y

From the data, we can construct the system:
2

664

1 0
1 1
1 2
1 3

3

775


b
m

�
=

2

664

0.5
1
2.5
3

3

775

Can we ‘solve’ this inconsistent system?
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The Least Squares Solution to a Linear System

Let A be a m⇥n matrix. A least squares solution to A~x = ~b
is the solution bx for which

k~b�Abx k  k~b�A~x k

for all ~x 2 Rn.

Definition: Least Squares Solution
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A Geometric Interpretation

~b

Abx

A~x

Col(A) ~0

The vector ~b is closer to Ax̂ than to A~x for all other ~x 2 ColA.

1. If ~b 2 ColA, then bx is . . .

2. Seek bx so that Abx is as close to ~b as possible. That is, bx should
solve Abx = bb where bb is . . .

Section 6.5 Slide 329

Important Examples: Overdetermined Systems (Tall/Thin
Matrices)

A variety of factors impact the measured quantity.

In the above figure, the dashed red line with diamond symbols represents
the monthly mean values, centered on the middle of each month. The
black line with the square symbols represents the same, after correction
for the average seasonal cycle. (NOAA graph.)
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Previous data is the important time series of mean CO2 in the
atmosphere. The data is collected at the Mauna Loa observatory on the
island of Hawaii (The Big Island). One of the most important
observatories in the world, it is located at the top of the Mauna Kea
volcano, 4,205 meters altitude.
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Important Examples: Underdetermined Systems
(Short/Fat Matrices)

There are too few measurements, and many
solutions to A~x = ~b. Choose bx solving the
system, with the smallest length.

1. Abx = ~b.

2. For all ~x with A~x = ~b, kbxk  k~xk.
This is the least squares problem of ‘Big
Data.’ (But not addressed in this course.)
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The Normal Equations

The least squares solutions to A~x = ~b coincide with the
solutions to

ATA~x = AT~b| {z }
Normal Equations

Theorem (Normal Equations for Least Squares)
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Derivation

~b

Abx

~b�Abx

Col(A)
~0

Rn bx A

The least-squares solution x̂ is in Rn.

1. bx is the least squares solution, is equivalent to ~b�Abx is orthogonal
to A.

2. A vector ~v is in NullAT if and only if ~v = ~0.

3. So we obtain the Normal Equations:
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Example

Compute the least squares solution to A~x = ~b, where

A =

2

4
4 0
0 2
1 1

3

5 , ~b =

2

4
2
0
11

3

5

Solution:

ATA =


4 0 1
0 2 1

�2

4
4 0
0 2
1 1

3

5 =

AT~b =


4 0 1
0 2 1

�2

4
2
0
11

3

5 =
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The normal equations ATA~x = AT~b become:
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Theorem

Let A be any m⇥ n matrix. These statements are equivalent.
1. The equation A~x = ~b has a unique least-squares solution

for each ~b 2 Rm.

2. The columns of A are linearly independent.

3. The matrix ATA is invertible.
And, if these statements hold, the least square solution is

bx = (ATA)�1AT~b.

Theorem (Unique Solutions for Least Squares)

Useful heuristic: ATA plays the role of ‘length-squared’ of the matrix A.
(See the sections on symmetric matrices and singular value
decomposition.)
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Example

Compute the least squares solution to A~x = ~b, where

A =

2

664

1 �6
1 �2
1 1
1 7

3

775 , ~b =

2

664

�1
2
1
6

3

775

Hint: the columns of A are orthogonal.
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Let m⇥ n matrix A have a QR decomposition. Then for each
~b 2 Rm the equation A~x = ~b has the unique least squares
solution

Rbx = QT~b.

(Remember, R is upper triangular, so the equation above is
solved by back-substitution.)

Theorem (Least Squares and QR)
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Example 3. Compute the least squares solution to A~x = ~b, where

A =

2

664

1 3 5
1 1 0
1 1 2
1 3 3

3

775 , ~b =

2

664

3
5
7
�3

3

775

Solution. The QR decomposition of A is

A = QR = 1
2

2

664

1 1 1
1 �1 �1
1 �1 1
1 1 �1

3

775

2

4
2 4 5
0 2 3
0 0 2

3

5
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QT~b = 1
2

2

4
1 1 1 1
1 �1 �1 1
1 �1 1 �1

3

5

2

664

3
5
7
�3

3

775 =

2

4�6
4

3

5

And then we solve by backwards substitution R~x = QT~b

2

4
2 4 5
0 2 3
0 0 2

3

5

2

4
x1

x2

x3

3

5 =

2

4�6
4

3

5
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Chapter 6 : Orthogonality and Least Squares
6.6 : Applications to Linear Models
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Topics and Objectives

Topics

1. Least Squares Lines

2. Linear and more complicated models

Learning Objectives

For the topics covered in this section, students are expected to be able to
do the following.

1. Apply least-squares and multiple regression to construct a linear
model from a set of data points.

2. Apply least-squares to fit polynomials and other curves to data.

Motivating Question

Compute the equation of the line y = �0 + �1x that best fits the data

x 2 5 7 8
y 1 1 4 3
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The Least Squares Line

Graph below gives an approximate linear relationship between x and y.

1. Black circles are data.
2. Blue line is the least squares line.
3. Lengths of red lines are the .

The least squares line minimizes the sum of squares of the .

x

y
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Example 1 Compute the least squares line y = �0 + �1x that best fits
the data

x 2 5 7 8
y 1 1 4 3

We want to solve 2

664

1 2
1 5
1 7
1 8

3

775


�0

�1

�
=

2

664

1
1
4
3

3

775

This is a least-squares problem : X~� = ~y.

Section 6.6 Slide 346

The normal equations are

XTX =


1 1 1 1

�
2

664

1
1
1
1

3

775 =


4 22
22 142

�

XT~y =


1 1 1 1

�
2

664

3

775 =


9
59

�

So the least-squares solution is given by

4 22
22 142

� 
�0

�1

�
=


9
59

�

y = �0 + �1x =
�5

21
+

19

42
x

As we may have guessed, �0 is negative, and �1 is positive.
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Least Squares Fitting for Other Curves

We can consider least squares fitting for the form

y = �0 + �1f1(x) + �1f2(x) + · · ·+ �kfk(x).

where the functions fj are known. Should have only a few functions!
Keep in mind this is a linear problem in the � variables.
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Least Squares Fitting for Other Curves

Black line is yearly CO2 levels, and the monthly is the red line. To
capture seasonality, would need a curve

daily CO2 = �0 + �1t+ �2 sin
�
2⇡ t

12

�
+ �3 cos

�
2⇡ t

12

�

Above, t is time, measured in months.
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WolframAlpha and Mathematica Syntax

Least squares problems can be computed with WolframAlpha,
Mathematica, and many other software.

WolframAlpha

linear fit {{x1, y1}, {x2, y2}, . . . , {xn, yn}}

Mathematica

LeastSquares[{{x1, x1, y1}, {x2, x2, y2}, . . . , {xn, xn, yn}}]

Almost any spreadsheet program does this as a function as well.
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Section 7.1 : Diagonalization of Symmetric
Matrices

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Symmetric matrices

2. Orthogonal diagonalization

3. Spectral decomposition

Learning Objectives

1. Construct an orthogonal diagonalization of a symmetric matrix,
A = PDPT .

2. Construct a spectral decomposition of a matrix.
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Symmetric Matrices

Matrix A is symmetric if AT = A.

Definition

Example. Which of the following matrices are symmetric? Symbols ⇤
and ? represent real numbers.

A = [⇤] B =


⇤ ?
? ⇤

�
C =


4 0
0 0

�

D =


? ?
0 0

�
E =

2

4
4 2
0 0
0 0

3

5 F =

2

664

4 2 0 1
2 0 7 4
0 7 6 0
1 4 0 3

3

775
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ATA is Symmetric

A very common example: For any matrix A with columns a1, . . . , an,

ATA =

2

6664

�� aT1 ��
�� aT2 ��
...

...
...

�� aTn ��

3

7775

2

4
| | · · · |
a1 a2 · · · an
| | · · · |

3

5

=

2

6664

aT1 a1 aT1 a2 · · · aT1 an
aT2 a1 aT2 a2 · · · aT2 an
...

...
. . .

...
aTna1 aTna2 · · · aTnan

3

7775

| {z }
Entries are the dot products of columns of A
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Symmetric Matrices and their Eigenspaces

A is a symmetric matrix, with eigenvectors ~v1 and ~v2 corresponding
to two distinct eigenvalues. Then ~v1 and ~v2 are orthogonal.

More generally, eigenspaces associated to distinct eigenvalues are
orthogonal subspaces.

Theorem

Proof:
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Example 1

Diagonalize A using an orthogonal matrix. Eigenvalues of A are given.

A =

0

@
0 0 1
0 1 0
1 0 0

1

A , � = �1, 1
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Spectral Theorem

Recall: If P is an orthogonal n⇥ n matrix, then P�1 = PT , which
implies A = PDPT is diagonalizable and symmetric.

An n⇥ n symmetric matrix A has the following properties.

1. All eigenvalues of A are .

2. The dimenison of each eigenspace is full, that it’s
dimension is equal to it’s algebraic multiplicity.

3. The eigenspaces are mutually orthogonal.

4. A can be diagonalized: A = PDPT , where D is diagonal
and P is .

Theorem: Spectral Theorem

Proof (if time permits):

Section 7.1 Slide 357

Spectral Decomposition of a Matrix

Suppose A can be orthogonally diagonalized as

A = PDPT =
⇥
~u1 · · · ~un

⇤
2

64
�1 · · · 0
...

. . .
...

0 · · · �n

3

75

2

64
~uT
1
...
~uT
n

3

75

Then A has the decomposition

A = �1~u1~u
T
1 + · · ·+ �n~un~u

T
n =

nX

i=1

�i~ui~u
T
i

Spectral Decomposition

Each term in the sum, �i~ui~uT
i , is an n⇥ n matrix with rank .
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Example 2

Construct a spectral decomposition for A whose orthogonal
diagonalization is given.

A =

✓
3 1
1 3

◆
= PDPT

=

✓
1/

p
2 �1/

p
2

1/
p
2 1/

p
2

◆✓
4 0
0 2

◆✓
1/

p
2 1/

p
2

�1/
p
2 1/

p
2

◆
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Section 7.2 : Quadratic Forms

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Quadratic forms

2. Change of variables

3. Principle axes theorem

4. Classifying quadratic forms

Learning Objectives

1. Characterize and classify quadratic forms using eigenvalues and
eigenvectors.

2. Express quadratic forms in the form Q(~x) = ~xTA~x.

3. Apply the principle axes theorem to express quadratic forms with no
cross-product terms.

Motivating Question Does this inequality hold for all x, y?

x2 � 6xy + 9y2 � 0
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Quadratic Forms

A quadratic form is a function Q : Rn ! R, given by

Q(~x) = ~xTA~x =
⇥
x1 x2 · · · xn

⇤

2

6664

a11 a12 · · · a1n
a12 a22 · · · a2n
...

...
. . .

...
a1n a2n · · · ann

3

7775

2

664

x1

x2

· · ·
xn

3

775

Matrix A is n⇥ n and symmetric.

Definition

In the above, ~x is a vector of variables.
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Example 1

Compute the quadratic form ~xTA~x for the matrices below.

A =


4 0
0 3

�
, B =


4 1
1 �3

�
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Example 1 - Surface Plots

The surfaces for Example 1 are shown below.

�4 �2 0 2 4 �5

0

5
0

100

x1

x2

�4 �2 0 2 4 �5

0

5

�100

0

100

x1

x2

Students are not expected to be able to sketch quadratic surfaces, but it

is helpful to see what they look like.
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Example 2

Write Q in the form ~xTA~x for ~x 2 R3.

Q(x) = 5x2
1 � x2

2 + 3x2
3 + 6x1x3 � 12x2x3
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Change of Variable

If ~x is a variable vector in Rn, then a change of variable can be
represented as

~x = P~y, or ~y = P�1~x

With this change of variable, the quadratic form ~xTA~x becomes:
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Example 3

Make a change of variable ~x = P~y that transforms Q = ~xTA~x so that it
does not have cross terms. The orthogonal decomposition of A is given.

A =

✓
3 2
2 6

◆
= PDPT

P =
1p
5

✓
2 1
�1 2

◆

D =

✓
2 0
0 7

◆
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Principle Axes

Suppose Q(~x) = ~xTA~x, where A 2 R2 is symmetric and invertible.
Then the set of ~x that satisfies

C = ~xTA~x

gives a curve in R2.
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Principle Axes Theorem

If A is a matrix then there exists an
orthogonal change of variable ~x = P~y that transforms ~xTA~x to
~xTD~x with no cross-product terms.

Theorem

Proof (if time permits):
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Example 5

Compute the quadratic form Q = ~xTA~x for A =

✓
5 2
2 8

◆
, and find a

change of variable that removes the cross-product term. A sketch of Q is
below.

x1

x2 semi-minor axis

semi-major axis
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Classifying Quadratic Forms

5

10

Q = x21 + x22
Q = �x21 � x22

A quadratic form Q is
1. positive definite if for all ~x 6= ~0.

2. negative definite if for all ~x 6= ~0.

3. positive semidefinite if for all ~x.

4. negative semidefinite if for all ~x.

5. indefinite if

Definition
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Quadratic Forms and Eigenvalues

If A is a matrix with eigenvalues �i,
then Q = ~xTA~x is

1. positive definite i↵ �i

2. negative definite i↵ �i

3. indefinite i↵ �i

Theorem

Proof (if time permits):

Section 7.2 Slide 372



Example 6

We can now return to our motivating question (from first slide): does
this inequality hold for all x, y?

x2 � 6xy + 9y2 � 0
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Section 7.3 : Constrained Optimization

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. Constrained optimization as an eigenvalue problem

2. Distance and orthogonality constraints

Learning Objectives

1. Apply eigenvalues and eigenvectors to solve optimization problems
that are subject to distance and orthogonality constraints.
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Example 1

The surface of a unit sphere in R3 is
given by

1 = x2
1 + x2

2 + x2
3 = ||~x||2

Q is a quantity we want to optimize

Q(~x) = 9x2
1 + 4x2

2 + 3x2
3

Find the largest and smallest values of Q on the surface of the sphere.
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A Constrained Optimization Problem

Suppose we wish to find the maximum or minimum values of

Q(~x) = ~xTA~x

subject to
||~x|| = 1

That is, we want to find

m = min{Q(~x) : ||~x|| = 1}
M = max{Q(~x) : ||~x|| = 1}

This is an example of a constrained optimization problem. Note that
we may also want to know where these extreme values are obtained.

Section 7.3 Slide 377

Constrained Optimization and Eigenvalues

If Q = ~xTA~x, A is a real n⇥ n symmetric matrix, with eigenvalues

�1 � �2 . . . � �n

and associated normalized eigenvectors

~u1, ~u2, . . . , ~un

Then, subject to the constraint ||~x|| = 1,
• the maximum value of Q(~x) = �1, attained at ~x = ± ~u1.

• the minimum value of Q(~x) = �n, attained at ~x = ± ~un.

Theorem

Proof:
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Example 2

Calculate the maximum and minimum values of Q(~x) = ~xTA~x, ~x 2 R3,
subject to ||~x|| = 1, and identify points where these values are obtained.

Q(~x) = x2
1 + 2x2x3

Section 7.3 Slide 379

Example 2

The image below is the unit sphere whose surface is colored according to
the quadratic from the previous example. Notice the agreement between
our solution and the image.
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An Orthogonality Constraint

Suppose Q = ~xTA~x, A is a real n ⇥ n symmetric matrix, with
eigenvalues

�1 � �2 . . . � �n

and associated eigenvectors

~u1, ~u2, . . . , ~un

Subject to the constraints ||~x|| = 1 and ~x · ~u1 = 0,
• The maximum value of Q(~x) = �2, attained at ~x = ~u⇤.

• The minimum value of Q(~x) = �n, attained at ~x = ~un.

Note that �2 is the second largest eigenvalue of A.

Theorem
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Example 3

Calculate the maximum value of Q(~x) = ~xTA~x, ~x 2 R3, subject to
||~x|| = 1 and to ~x · ~u1 = 0, and identify a point where this maximum is
obtained.

Q(~x) = x2
1 + 2x2x3, ~u1 =

0

@
1
0
0

1

A
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Example 4 (if time permits)

Calculate the maximum value of Q(~x) = ~xTA~x, ~x 2 R3, subject to
||~x|| = 5, and identify a point where this maximum is obtained.

Q(~x) = x2
1 + 2x2x3
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Section 7.4 : The Singular Value Decomposition

Chapter 7: Orthogonality and Least Squares

Math 1554 Linear Algebra
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Topics and Objectives

Topics

1. The Singular Value Decomposition (SVD) and some of its
applications.

Learning Objectives

1. Compute the SVD for a rectangular matrix.

2. Apply the SVD to
I estimate the rank and condition number of a matrix,
I construct a basis for the four fundamental spaces of a matrix, and
I construct a spectral decomposition of a matrix.
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Example 1

The linear transform whose standard matrix is

A =
1p
2

✓
1 �1
1 1

◆✓
2
p
2 0

0
p
2

◆
=

✓
2 �1
2 1

◆

maps the unit circle in R2 to an ellipse, as shown below. Identify the unit
vector ~x in which ||A~x|| is maximized and compute this length.

x1

x2

multiply by A
x1

x2
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Example 1 - Solution
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Singular Values

The matrix ATA is always symmetric, with non-negative eigenvalues
�1 � �2 � · · · � �n � 0. Let {~v1, . . . ,~vn} be the associated orthonormal
eigenvectors. Then

kA~vjk2 =

If the A has rank r, then {A~v1, . . . , A~vr} is an orthogonal basis for ColA:
For 1  j < k  r:

(A~vj)
TA~vk =

Definition: �1 =
p
�1 � �2 =

p
�2 · · · � �n =

p
�n are the singular

values of A.
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The SVD

A m ⇥ n matrix with rank r and non-zero singular values �1 �
�2 � · · · � �r has a decomposition U⌃V T where

⌃ =


D 0
0 0

�

m⇥n

=

2

6666664

�1 0 . . . 0

0 �2 . . .
... 0

...
...

. . .
0 0 . . . �r

0 0

3

7777775

U is a m ⇥ m orthogonal matrix, and V is a n ⇥ n orthogonal
matrix.

Theorem: Singular Value Decomposition
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Algorithm to find the SVD of A

Suppose A is m⇥ n and has rank r  n.

1. Compute the squared singular values of ATA, �2
i , and construct ⌃.

2. Compute the unit singular vectors of ATA, ~vi, use them to form V .

3. Compute an orthonormal basis for ColA using

~ui =
1

�i
A~vi, i = 1, 2, . . . r

Extend the set {~ui} to form an orthonomal basis for Rm, use the
basis for form U .
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Example 2: Write down the singular value decomposition for
2

664

2 0
0 �3
0 0
0 0

3

775 =
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Example 3: Construct the singular value decomposition of

A =

2

4
1 �1
�2 2
2 �2

3

5.

(It has rank 1.)
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Applications of the SVD

The SVD has been applied to many modern applications in CS,
engineering, and mathematics (our textbook mentions the first four).

• Estimating the rank and condition number of a matrix

• Constructing bases for the four fundamental spaces

• Computing the pseudoinverse of a matrix

• Linear least squares problems

• Non-linear least-squares
https://en.wikipedia.org/wiki/Non-linear least squares

• Machine learning and data mining
https://en.wikipedia.org/wiki/K-SVD

• Facial recognition
https://en.wikipedia.org/wiki/Eigenface

• Principle component analysis
https://en.wikipedia.org/wiki/Principal component analysis

• Image compression

Students are expected to be familiar with the 1
st

two items in the list.
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The Condition Number of a Matrix

If A is an invertible n⇥ n matrix, the ratio

�1

�n

is the condition number of A.

Note that:

• The condition number of a matrix describes the sensitivity of a
solution to A~x = ~b is to errors in A.

• We could define the condition number for a rectangular matrix, but
that would go beyond the scope of this course.
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Example 4

For A = U⌃V ⇤, determine the rank of A, and orthonormal bases for
NullA and (ColA)?.
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Example 4 - Solution
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The Four Fundamental Spaces

1. A~vs = �s~us.

2. ~v1, . . . ,~vr is an orthonormal basis for RowA.

3. ~u1, . . . , ~ur is an orthonormal basis for ColA.

4. ~vr+1, . . . ,~vn is an orthonormal basis for NullA.

5. ~ur+1, . . . , ~un is an orthonormal basis for NullAT .
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The Spectral Decomposition of a Matrix

The SVD can also be used to construct the spectral decomposition for
any matrix with rank r

A =
rX

s=1

�s~us~v
T
s ,

where ~us,~vs are the sth columns of U and V respectively.

For the case when A = AT , we obtain the same spectral decomposition
that we encountered in Section 7.2.
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