Math 1113

Pre-Calc

Practice Exam 1

1. Find the domain and range of the functions f(x) = |x| - 2, $g(x) = 3^{2-x} + 1$, $h(x) = \frac{3-x}{\sqrt{25-x^2}}$.

2. Find the domain and range of the function

$$f(x) = \begin{cases} \sqrt{-x} & \text{if } -4 \le x \le 0\\ \sqrt{x} & \text{if } 0 < x \le 4 \end{cases}$$

3. Find
$$f \circ g$$
, $g \circ f$, $(f \circ g)(-1)$ and $(g \circ f)(2)$ if $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{\sqrt{x+2}}$.

4. Sketch the graph of

$$f(x) = \begin{cases} -x - 2 & \text{if } -4 \le x \le -1 \\ -1 & \text{if } -1 < x \le 1 \\ x - 2 & \text{if } 1 < x \le 2 \end{cases}$$

For what values of x is the function f(x) continuous? For what values does the function have a one-sided limit but NOT a two-sided limit?

- 5. Find the domain of $f(x) = 1 + e^{-\sin(x)}$.
- **6.** Find the largest $\delta > 0$ such that if $|x 23| < \delta$ then $|f(x) 4| < \varepsilon$ for $\varepsilon = 1$, where $f(x) = \sqrt{x 7}$.
- 7. At what points is the function $f(x) = \frac{x \tan x}{x^2 + 1}$ continuous? Repeat question for $g(x) = \sqrt{3x 1}$.
- 8. Find the limits.

(a)
$$\lim_{h \to 0^+} \frac{(x+h)^2 - x^2}{h}$$

(b) $\lim_{x \to \pi^-} \csc(x)$
(c) $\lim_{x \to 0} \frac{8x}{3\sin x - x}$
(d) $\lim_{x \to \infty} \frac{x^4 + x^3}{12x^3 + 128}$
(e) $\lim_{x \to \infty} \frac{\cos x - 1}{x}$

9. Suppose $\lim_{x\to a} f(x) = -7$ and $\lim_{x\to a} g(x) = 0$. Find the following limits

(a)
$$\lim_{x \to a} 3f(x) - g(x)$$

(b) $\lim_{x \to a} \frac{f(x)}{7 - g(x)}$
(c) $\lim_{x \to a} f(x) \cdot g(x)$

10. Suppose $\lim_{x\to 0} \left(\frac{4-f(x)}{x}\right) = 1$. Find $\lim_{x\to 0} f(x)$.