| UNIT 1 - Polynomial functio                                | ons, graphing, solving equa    | ations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |          |   |
|------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---|
| A.1 sets, intervals, absolute                              | e value, exponent rules        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
| A.2 factoring, polyhomiais<br>A.6 solving quadratic equat  | tions, radical expressions     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
| A.8 complex numbers, conj                                  | jugates                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          | • |
| 1.1 coordinate plane, quade<br>1.2 lines slope slope-inter | rants, equation of a circle,   | distance, midpoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t, intercepts, | symmetry |   |
| 1.3 functions, domain, rang                                | je, difference quotient        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
| 1.4 increasing, decreasing,                                | max/min, even/odd, piece       | wise functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |          |   |
| 1.6 composite functions, do                                | omain of a composite func      | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |          |   |
| 1.7 one-to-one, function in                                | verse, range of one-to-one     | functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |          |   |
| 7.1 solving systems of equa                                | ations, substitution method    | a, elimination metr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | · · · · · ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | a a a la aj a a                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | a a a a a <mark>a</mark> a a   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | · · · · · ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | a a a a a <mark>a</mark> a     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | · · · · · ·                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | · · · · · · ·                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            | a a a a a a <mark>a a</mark> a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | • • • •  | • |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
| 🦲                                                          |                                | a a seconda de la composición de la composicinde la composición de la composición de la composición de |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |
|                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |          |   |

#### Exercises **SECTION A.1**

#### **Basic Concepts and Skills**

In Exercises 1-4, write each of the following rational numbers In Exercises 5-10, classify each of the following numbers as as a decimal and state whether the decimal is repeating or rational or irrational. 6.  $-\sqrt{25}$ terminating. 5. -207 √32 8. 5 +  $\sqrt{18}$ 1. -2. -9. 0.321

5 3 3.

55. (-∞, 5]

57. ( 4'4)

\_3 9

56. (-∞, -1]

2

58. (-3, -

4.  $\frac{41}{15}$ 

10. 5.82

926 Appendix A Review

In Exercises 11-14, find each set, given In Exercises 59–68, evaluate each expression for x = 3 $A = \{-4, -2, 0, 2, 4\}, B = \{-3, 0, 1, 2, 3, 4\}, and$ and y = -5. 59. 2(x + y) - 3y60. -2(x + y) + 5y $C = \{-4, -3, -2, -1, 0, 2\}.$ 11.  $A \cup B$ 61. 3|x| - 2|y|62. 7|x - y|12.  $A \cap B$ 63.  $\frac{x-3y}{2} + xy$ 64.  $\frac{y+3}{x} - xy$ 13.  $(A \cup B) \cap C$ 14.  $(A \cup B) \cup C$ 65.  $\frac{2(1-2x)}{x} - (-x)y$ 66.  $\frac{3(2-x)}{-(1-xy)}$ In Exercises 15 and 16, convert each decimal to a quotient of two integers in lowest terms. 14 15. 3.75 2 16. -2.35 67. <u>x</u> 68. In Exercises 17-24, find the union and the intersection of the given intervals. **17.**  $I_1 = (-2, 3]; I_2 = [1, 5)$ In Exercises 69-78, name the exponent and the base. **18.**  $I_1 = [1, 7]; I_2 = (3, 5)$ 69. 17<sup>3</sup> 70, 10<sup>2</sup> **19.**  $I_1 = (-6, 2); I_2 = [2, 10)$ 71. 9<sup>0</sup> **20.**  $I_1 = (-\infty, -3]; I_2 = (-3, \infty)$ 72. (-2)<sup>0</sup> **21.**  $I_1 = (-\infty, 7); I_2 = (-\infty, 3)$ **22.**  $I_1 = (-2, \infty); I_2 = (0, \infty)$ 73. (-5)<sup>5</sup> **23.**  $I_1 = (-\infty, 10); I_2 = (10, \infty)$ 74.  $(-99)^2$ 75.  $-10^3$ **24.**  $I_1 = (-5, 6); I_2 = (-\infty, \infty)$ 76.  $-(-3)^7$ In Exercises 25-38, rewrite each expression without absolute 77. a<sup>2</sup> value bars. 25. 20 26. 12 78.  $(-b)^3$ 27. - |-4| 28. - |-17| In Exercises 79-100, evaluate each expression.  $\frac{5}{7}$ -3 79. 61 80. 34 29. 30. 5 **81.** 7<sup>0</sup> **82.** (-8)<sup>0</sup> 32.  $|\sqrt{2} - 5|$ 31.  $|5 - \sqrt{2}|$ 83.  $(2^3)^2$ 84.  $(3^2)^3$ 8 -8 85.  $(3^2)^{-2}$ 86.  $(7^2)^{-1}$ 33. <del>|-8</del> 34. 8 87.  $(5^{-2})^3$ 88.  $(5^{-1})^3$ 35. |5 + |-7|| 36. |5 - |-7|| **90.**  $(7^{-2}) \cdot (7^3)$ 89.  $(4^{-3}) \cdot (4^{5})$ 37. ||7| - |4|| 38. ||4| - |7|| **91.** 3<sup>-2</sup> + **92.** 5<sup>-2</sup> In Exercises 39-46, use the absolute value to express the distance between the points with coordinates a and b on the 93. 94 number line. Then determine this distance by evaluating the absolute value expression.  $(5^3)$ **39.** a = 3 and b = 8**40.** a = 2 and b = 14512 **41.** a = -6 and b = 9**42.** a = -12 and b = 3**43.** a = -20 and b = -6**44.** a = -14 and b = -1**45.**  $a = \frac{22}{7}$  and b = -16 and b = -46. a = 5  $\left(\frac{11}{7}\right)$ 13 99. 100. In Exercises 47-58, graph each of the given intervals on a separate number line and write the inequality notation for each. In Exercises 101-134, simplify each expression. Write your 47. [1,4] 48. [-2,2] answers without negative exponents. Whenever an exponent is negative or zero, assume that the base is not zero. 9 49. (14, 28) 50. -2 101.  $x^4y^0$ 102.  $x^{-1}y^0$ 103.  $x^{-1}y$ 104.  $x^2y^{-2}$ 51. (-3,1] 52. [-6, -2] 53. [-3,∞) 54. [0,∞) 105.  $-8x^{-1}$ 106.  $(-8x)^{-1}$ 

107.  $x^{-1}(3v^0)$ 

108.  $x^{-3}(3y^2)$ 

109.  $x^{-1}y^{-2}$ 110.  $x^{-3}y^{-2}$ 111.  $(x^{-3})^4$ 112.  $(x^{-5})^2$ 114.  $(x^{-4})^{-12}$ 113.  $(x^{-11})^{-3}$ 115.  $-3(xy)^5$ 116.  $-8(xy)^6$ 118.  $6(x^{-1}y)^3$ 117.  $4(xy^{-1})^2$ 119.  $3(x^{-1}y)^{-5}$ 120.  $-5(xy^{-1})^{-6}$  $(x^3)$ 121. 122. 123.  $\left(\frac{2xy}{x}\right)$ 124.  $\left(\frac{5xy}{x^3}\right)$ 125. 126. 127. 128. 4x 129. 130. 131.  $\frac{x^3y}{2}$ 132. **133.**  $\frac{27x}{x}$ 134.  $\frac{15x^5y^{-3}}{3x^7y^{-3}}$ 

#### Applying the Concepts

135. Media players. Let A = the set of people who own MP3 players and B = the set of people who own DVD players.

**a.** Describe the set  $A \cup B$ .

**b.** Describe the set  $A \cap B$ .

136. Standard car features. The table indicates whether certain features are "standard" for each of three types of car.

|                        | Navigation<br>System | Automatic<br>Transmission | Leather<br>Seats |  |
|------------------------|----------------------|---------------------------|------------------|--|
| 2016 Lexus<br>GS 350   | yes                  | yes                       | yes              |  |
| 2016 Lincoln<br>MKZ    | no                   | yes                       | yes              |  |
| 2016 Cadillac<br>ATS-V | no                   | no                        | yes              |  |

Use the roster method to describe each of the following sets.

- **a.** A = cars in which a navigation system is standard.
- **b.** *B* = cars in which an automatic transmission is standard.
- c. C = cars in which leather seats are standard.

```
d. A \cap B
```

- e.  $B \cap C$
- **f.**  $A \cup B$
- g.  $A \cup C$

140. Downloading music. To download a 4 MB song with a 56 Kbs modem takes an average of 15 minutes. Use absolute value notation to write an expression that describes the difference between this average time and the actual time it took to download the following songs. Then evaluate that expression.

- a. Believe (Cher): 14 minutes
- b. Caged Bird (Alicia Keys): 17.5 minutes
- c. Somewhere (Barbra Streisand): 15 minutes

142. Circle area. The area A of a circle with diameter d is given

by  $A = \pi \left(\frac{d}{2}\right)^2$ . Use this relationship to

- a. verify that doubling the length of the diameter of a circular skating rink increases the area of the rink by a factor of 2<sup>2</sup>.
- **b**. verify that tripling the length of the diameter of a circular skating rink increases the area of the rink by a factor of 3<sup>2</sup>.

2.  $x - \frac{1}{x}$ 

4.  $3x^4 + x^7 + 3x^5 - 2x + 1$ 

### **Basic Concepts and Skills**

9

**SECTION A.2** 

In Exercises 1-4, determine whether the given expression is a polynomial. If it is, write it in standard form.

**1.** 
$$1 + x^2 + 2x$$
  
**3.**  $r^{-2} + 3r + 5$ 

In Exercises 5-8, find the degree and list the terms of the polynomial.

5. 
$$7x + 3$$
  
6.  $-3x^2 + 7$   
7.  $x^2 - x^4 + 2x$ 

8. 
$$x + 2x^3 + 9x^7 - 2$$

In Exercises 9-16, perform the indicated operations. Write the resulting polynomial in standard form.

9. 
$$(x^{2} + 2x^{2} - 5x + 3) + (-x^{2} + 2x - 4)$$
  
10.  $(x^{3} - 3x + 1) + (x^{3} - x^{2} + x - 3)$   
11.  $(2x^{3} - x^{2} + x - 5) - (x^{3} - 4x + 3)$   
12.  $(-x^{3} + 2x - 4) - (x^{3} + 3x^{2} - 7x + 2)$   
13.  $-2(3x^{2} + x + 1) + 6(-3x^{2} - 2x - 2)$   
14.  $2(5x^{2} - x + 3) - 4(3x^{2} + 7x + 1)$   
15.  $(3y^{3} - 4y + 2) + (2y + 1) - (y^{3} - y^{2} + 4)$   
16.  $(5y^{2} + 3y - 1) - (y^{2} - 2y + 3) + (2y^{2} + y + 5)$   
In Exercises 17-50, perform the indicated operations.  
17.  $6x(2x + 3)$   
18.  $7x(3x - 4)$   
19.  $(x + 1)(x^{2} + 2x + 2)$   
20.  $(x - 5)(2x^{2} - 3x + 1)$   
21.  $(3x - 2)(x^{2} - x + 1)$   
22.  $(2x + 1)(x^{2} - 3x + 4)$   
23.  $(x + 1)(x + 2)$   
24.  $(x + 2)(x + 3)$   
25.  $(3x + 2)(3x + 1)$   
26.  $(x + 3)(2x + 5)$   
27.  $(-4x + 5)(x + 3)$   
28.  $(-2x + 1)(x - 5)$   
29.  $(3x - 2)(2x - 1)$   
30.  $(x - 1)(5x - 3)$   
31.  $(2x - 3a)(2x + 5a)$   
32.  $(5x - 2a)(x + 5a)$   
33.  $(x + 2)^{2} - x^{2}$   
34.  $(x - 3)^{2} - x^{2}$   
35.  $(x + 3)^{3} - x^{3}$   
36.  $(x - 2)^{3} - x^{3}$   
37.  $(4x + 1)^{2}$   
38.  $(3x + 2)^{2}$   
39.  $(3x + 1)^{3}$   
40.  $(2x + 3)^{3}$   
41.  $(5 - 2x)(5 + 2x)$   
42.  $(3 - 4x)(3 + 4x)$   
43.  $\left(x + \frac{3}{4}\right)^{2}$   
44.  $\left(x + \frac{2}{5}\right)^{2}$ 

**46.**  $(x-2)(x^2-4x-3)$ 47.  $(1 + y)(1 - y + y^2)$ 49.  $(x-6)(x^2+6x+36)$ 

**48.**  $(y + 4)(y^2 - 4y + 16)$ 50.  $(x-1)(x^2+x+1)$ 

In Exercises 51-60, perform the indicated operations.

51. (x + 2y)(3x + 5y)53. (2x - y)(3x + 7y)55.  $(x - y)^2(x + y)^2$ 57.  $(x + y)(x - 2y)^2$ 59.  $(x - 2y)^3(x + 2y)$ 

52. (2x + y)(7x + 2y)54. (x - 3y)(2x + 5y)56.  $(2x + y)^2(2x - y)^2$ 58.  $(x - y)(x + 2y)^2$ 60.  $(2x + y)^3(2x - y)$ 

In Exercises 61-108, factor each polynomial completely. If a polynomial cannot be factored, state that it is irreducible.

| <b>61.</b> $3x^3 - x^2$            | <b>62.</b> $2x^3 + 2x^2$           |
|------------------------------------|------------------------------------|
| <b>63.</b> $x^2 + 7x + 12$         | <b>64.</b> $x^2 + 8x + 15$         |
| <b>65.</b> $x^2 - 6x + 8$          | <b>66.</b> $x^2 - 9x + 14$         |
| 67. $6x^2 + 17x + 12$              | <b>68.</b> $8x^2 - 10x - 3$        |
| <b>69.</b> $x^2 + 6x + 9$          | <b>70.</b> $x^2 + 8x + 16$         |
| <b>71.</b> $9x^2 + 6x + 1$         | <b>72.</b> $36x^2 + 12x + 1$       |
| <b>73.</b> $x^2 - 64$              | <b>74.</b> $x^2 - 121$             |
| <b>75.</b> $16x^2 - 9$             | <b>76.</b> $25x^2 - 49$            |
| <b>77.</b> $x^3 - 27$              | <b>78.</b> $x^3 - 216$             |
| <b>79.</b> $8 - x^3$               | <b>80.</b> $27 - x^3$              |
| <b>81.</b> $x^3 - 3x^2 + x - 3$    | 82. $x^3 + 5x^2 + x + 5$           |
| <b>83.</b> $x^3 - 5x^2 + x - 5$    | <b>84.</b> $x^3 - 7x^2 + x - 7$    |
| 85. $x^4 - 1$                      | <b>86.</b> $x^4 - 81$              |
| 87. $20x^4 - 5$                    | <b>88.</b> $12x^4 - 75$            |
| <b>89.</b> $1 - 16x^2$             | <b>90.</b> $4 - 25x^2$             |
| <b>91.</b> $x^2 - 6x + 9$          | <b>92.</b> $x^2 - 8x + 16$         |
| <b>93.</b> $4x^2 + 4x + 1$         | <b>94.</b> $16x^2 + 8x + 1$        |
| <b>95.</b> $2x^2 - 8x - 10$        | <b>96.</b> $5x^2 - 10x - 40$       |
| 70. 4A OA 10                       | <b>70.</b> <i>3A</i> 10A TO        |
| <b>97.</b> $2x^2 + 3x - 20$        | <b>98.</b> $2x^2 - 7x - 30$        |
| <b>99.</b> $x^2 - 12x + 36$        | <b>100.</b> $x^2 - 20x + 25$       |
| <b>101.</b> $3x^5 + 12x^4 + 12x^3$ | <b>102.</b> $2x^5 + 16x^4 + 32x^4$ |
| <b>103.</b> $9x^2 - 1$             | <b>104.</b> $16x^2 - 25$           |
| <b>105.</b> $16x^2 + 24x + 9$      | <b>106.</b> $4x^2 + 20x + 25$      |
| <b>107.</b> $x^2 + 15$             | <b>108.</b> $x^2 + 24$             |
|                                    |                                    |

## **Basic Concepts and Skills**

**SECTION A.6** 

5 1

In Exercises 1-46, find the solution set of each equation. If the equation has no solution write  $\emptyset$ , and if the equation is an identity so state.

1. 
$$5 - 6(9x + 9) + 2y = 2(y + 1)$$
  
2.  $3(4y - 3) = 4[y - (4y - 3)]$   
3.  $2(3x + 4) = 6(x + 2) - 4$   
4.  $2(x - 2) + 3x = 6x + 7 - (x - 3)$   
5.  $\frac{2x + 1}{9} - \frac{x + 4}{6} = 1$   
6.  $\frac{2 - 3x}{7} + \frac{x - 1}{3} = \frac{3x}{7}$   
7.  $\frac{1}{3x} + \frac{1}{2x} = \frac{1}{6} - \frac{1}{x}$   
8.  $\frac{2}{x - 1} = \frac{3}{x + 1}$   
9.  $\frac{t}{t - 2} = -\frac{2}{3}$   
10.  $\frac{2}{x + 1} + 3 = \frac{8}{x + 1}$   
11.  $\frac{5x}{x - 1} = \frac{5}{x - 1} + 3$   
12.  $\frac{3x}{x + 1} - 3 + \frac{3}{2(x + 1)} = 0$   
13.  $\frac{1 + x}{x} = \frac{1}{x} + 1$   
14.  $\frac{x - 1}{x - 2} - 1 = \frac{1}{x - 2}$   
15.  $x^2 - 5x = 0$   
16.  $x^2 - 5x + 4 = 0$   
17.  $x^2 = 5x + 6$   
18.  $x = x^2 - 12$   
19.  $x^2 + 2x - 5 = 0$   
20.  $x^2 - x - 3 = 0$   
21.  $3(t^2 - 1) = 2t^2 + 4t + 1$   
22.  $8(y^2 - y) = y^2 + 3$   
23.  $x^3 = 2x^2$   
24.  $3x^4 - 27x^2 = 0$   
25.  $x^4 - x^3 = x^2 - x$   
26.  $x^3 - 36x = 16(x - 6)$   
27.  $\frac{x + 3}{x - 1} + \frac{x + 4}{x + 1} = \frac{8x + 5}{x^2 - 1}$   
28.  $\frac{6}{2x - 2} - \frac{1}{x + 1} = \frac{2}{2x + 2} + 1$   
29.  $\frac{x}{x - 4} - \frac{4}{x + 4} = \frac{2x}{x^2 - 16}$ 

30. 
$$\frac{x}{x-3} + \frac{3}{x+3} = \frac{6x}{x^2-9}$$
  
31.  $\frac{1}{x-1} + \frac{x}{x+3} = \frac{4}{x^2+2x-3}$   
32.  $\frac{2x}{x+3} - \frac{x}{x-1} = \frac{14}{x^2+2x-3}$   
33.  $t - \sqrt{3t+6} = -2$   
34.  $\sqrt{5y^2 - 10y + 9} = 2y - 1$   
35.  $\sqrt{6t-11} = 2t - 7$   
36.  $\sqrt{3x+1} = x - 1$   
37.  $\sqrt{x-3} = \sqrt{2x-5} - 1$   
38.  $\sqrt{7x+1} - \sqrt{5x+4} = 1$   
39.  $x^{2/3} - 6x^{1/3} + 8 = 0$   
40.  $x^{2/5} + x^{1/5} - 2 = 0$   
41.  $2x^{1/2} - x^{1/4} - 1 = 0$   
42.  $81y^4 + 1 = 18y^2$   
43.  $(x^2 - 4)^2 - 3(x^2 - 4) - 4 = 0$   
44.  $(x^2 - 4x)^2 + 7(x^2 - 4x) + 12 = 0$   
45.  $(\frac{x}{x+1})^2 - \frac{2x}{x+1} - 8 = 0$   
46.  $8\sqrt{\frac{x}{x+3}} - \sqrt{\frac{x+3}{x}} = 2$   
47. Solve for x:  $\frac{x+b}{x-b} = \frac{x-5b}{2x-5b}$   
48. If  $a > 0$  solve for x:  $3a - \sqrt{ax} = \sqrt{a(3a+x)}$   
49. Solve for x:  $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}$   
(*Hint*:  $x = \sqrt{1 + x}$ )

**50.** Solve for *x*: x = 2 + ----1  $2+\frac{1}{2+\cdots}$  $\left(\text{Hint: } x = 2 + \frac{1}{x}\right)$ 

In Exercises 51 and 52, find the values of k for which the given equation has equal roots.

$$2x^2 + kx + k = 0$$
 **52.**  $x^2 + k^2 = 2(k + 1)x$   
If r and s are the roots of the quadratic equation

 $ax^2 + bx + c = 0$ , show that

51. 53.

$$r+s = -\frac{b}{a}$$
 and  $r \cdot s = \frac{c}{a}$ .

**SECTION A.8** 

# **Exercises**

# **Basic Concepts and Skills**

In Exercises 1–4, use the definition of equality of complex numbers to find the real numbers *x* and *y* such that the equation is true.

1. 2 + xi = y + 3i2. x - 2i = 7 + yi3.  $x - \sqrt{-16} = 2 + yi$ 4.  $3 + yi = x - \sqrt{-25}$ 

In Exercises 5–22, perform each operation and write the result in the standard form a + bi.

5. 
$$(5 + 2i) + (3 + i)$$
  
6.  $(4 - 3i) - (5 + 3i)$   
7.  $(3 - 5i) - (3 + 2i)$   
8.  $(-2 - 3i) + (-3 - 2i)$   
9.  $3(5 + 2i)$   
10.  $-4(2 - 3i)$   
11.  $3i(5 + i)$   
12.  $-3i(5 - 2i)$   
13.  $(3 + i)(2 + 3i)$   
14.  $(4 + 3i)(2 - 3i)$   
15.  $(2 - 3i)(2 + 3i)$   
16.  $(4 - 3i)(4 - 3i)$   
17.  $(3 + 4i)(4 - 3i)$   
18.  $(-2 + 3i)(-3 + 10i)$   
19.  $(\sqrt{3} - 12i)^2$   
20.  $(-\sqrt{5} - 13i)^2$   
21.  $(1 + 3i)^3$   
25.  $z = 4 + 5i$   
22.  $(1 - 2i)^3$   
10.  $-4(2 - 3i)$   
11.  $3i(5 - 2i)$   
11.  $3i(5 - 2i)$   
12.  $-3i(5 - 2i)$   
13.  $(4 - 3i)(4 - 3i)$   
14.  $(4 + 3i)(2 - 3i)$   
15.  $(2 - 3i)(-3 + 10i)$   
16.  $(4 - 3i)(4 - 3i)$   
17.  $z = \sqrt{2} - 3i$   
18.  $z = \sqrt{2} - 3i$   
19.  $z = \sqrt{2} - 3i$   
10.  $z = \sqrt{2} - 3i$   
10.  $z = \sqrt{2} - 3i$   
10.  $z = \sqrt{2} - 3i$   
11.  $z = \sqrt{2} - 3i$   
12.  $z = \sqrt{2} - 3i$   
13.  $z = \sqrt{2} - 3i$   
14.

n Exercises 23–28, write the conjugate  $\bar{z}$  of each complex number z. Then find  $z\bar{z}$ .

| <b>23.</b> $z = 2 - 3i$        | <b>24.</b> $z = \frac{1}{2} - 2i$           |
|--------------------------------|---------------------------------------------|
| <b>25.</b> $z = 4 + 5i$        | <b>26.</b> $z = \frac{2}{3} + \frac{1}{2}i$ |
| <b>27.</b> $z = \sqrt{2} - 3i$ | <b>28.</b> $z = \sqrt{5} + \sqrt{3}i$       |

(+ 5i)(+ 3i)

In Exercises 29–34, write each quotient in the standard form a + bi.

| <b>29.</b> $\frac{5}{-i}$ | <b>30.</b> $\frac{-1}{1+i}$   |
|---------------------------|-------------------------------|
| 31. $\frac{5i}{2+i}$      | <b>32.</b> $\frac{2+3i}{1+i}$ |
| 33. $\frac{2-5i}{4-7i}$   | 34. $\frac{2+\sqrt{-4}}{1+i}$ |

In Exercises 35–38, find each power of *i* and simplify the expression. 35.  $i^{17}$  36.  $i^{125}$ 

| 55.1                | 50. 1                |
|---------------------|----------------------|
| <b>37.</b> $i^{-7}$ | <b>38.</b> $i^{-24}$ |
|                     |                      |

In Exercises 39–42, let  $z_1 = a + bi$  and  $z_2 = c + di$ . 39. Prove that  $\overline{z_1} = z_1$ .

**40.** Prove that  $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ .

**41.** Prove that  $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$ . Use this fact to prove that  $\overline{z^2} = (\overline{z})^2$ .

**42.** Prove that  $z_1 + \overline{z_1} = 2a$  and that  $z_1 - \overline{z_1} = 2bi$ .

# Exercises SECTION 1.1 **Concepts and Vocabulary** 1. The graph of an equation in two variables such as x and y is the set of all ordered pairs (a, b) 3 2. The distance between the points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ is given by the formula d(P, Q) =3. The coordinates of the midpoint M = (x, y) of the line segment joining $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ are given by M =4. The standard form of the equation of a circle with center (h, k) and radius r is \_\_\_\_\_ 5. True or False. A point with a negative first coordinate and a positive second coordinate lies in the fourth quadrant. **6.** True or False. For any points $(x_1, y_1)$ and $(x_2, y_2)$ : $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ 7. True or False. The center of the circle given by the equation $(x + 3)^{2} + (y + 4)^{2} = 9$ is the point (3,4). 8. True or False. If (-2, 4) is a point on a graph that is symmetric with respect to the y-axis, then the point (2, 4) is also on the graph. In Exercises 13-20, find (a) the distance between P and Q and (b) the coordinates of the midpoint of the line segment PO. **13.** P(2, 1), Q(3, 5)14. P(1, 4), Q(3, 2)15. P(4, 5), Q(1, -2)16. P(2,3), Q(-1,2)17. P(-1, -5), Q(2, -3)In Exercises 37-46, graph each equation by plotting points. Let x = -3, -2, -1, 0, 1, 2, and 3, where applicable. 37. y = x + 1**38.** y = 2x - 1**39.** y = |x| + 1**40.** y = |x + 1|**41.** $y = 4 - x^2$ 42. $y = x^2 - 4$ 43. $v = \sqrt{9 - x^2}$ 44. $v = -\sqrt{9 - x^2}$ 45. $y = x^3$ 46. $y = -x^3$

# SECTION 1.2 Exercises

#### **Concepts and Vocabulary**



2

- 1. The slope of a horizontal line is \_\_\_\_\_; the slope of vertical line is \_\_\_\_\_\_.
- **2.** The slope of the line passing through the points  $P = (x_1, y_1)$  and  $Q = (x_2, y_2)$  is given by the formula m =
- 3. Every line parallel to the line y = 3x 2 has slope, *m*, equal to \_\_\_\_\_\_.
- 4. Every line perpendicular to the line y = 3x 2 has slope, *m*, equal to
- 5. True or False. The slope of the line  $y = -\frac{1}{4}x + 5$  is equal to  $\frac{1}{4}$ .
- **6. True or False.** The *y*-intercept of the line y = 2x 3 is equal to 3.
- **7. True or False.** The graph of the line y = 4 is a horizontal line.
- **8.** True or False. The graph of the line x = -5 is a vertical line.

# **Building Skills**

In Exercises 9–16, find the slope of the line through the given pair of points. Without plotting any points, state whether the line is rising, falling, horizontal, or vertical.

| <b>9.</b> (1, 3), (4, 7)                       | <b>10.</b> $(0, 4), (2, 0)$    |
|------------------------------------------------|--------------------------------|
| <b>11.</b> (3, -2), (6, -2)                    | <b>12.</b> $(-3, 7), (-3, -4)$ |
| <b>13.</b> (0.5, 2), (3, -3.5)                 | <b>14.</b> (3, -2), (2, -3)    |
| <b>15.</b> $(\sqrt{2}, 1), (1 + \sqrt{2}, 5)$  |                                |
| <b>16.</b> $(1 - \sqrt{3}, 0), (1 + \sqrt{3})$ | $\overline{3}, 3\sqrt{3}$      |
|                                                |                                |

### In the figure, identify the line with the given slope *m*.

| <b>17.</b> $m = 1$ | <b>18.</b> $m = -1$        |
|--------------------|----------------------------|
| <b>19.</b> $m = 0$ | 20. <i>m</i> is undefined. |

In the figure below, find the slope of each line. (The scale is the same on both axes.)





In Exercises 25–32, find an equation in slope-intercept form of the line that passes through the given point and has slope m. Also sketch the graph of the line by locating the second point with the rise-and-run method.

**25.** 
$$(0, 5); m = 3$$
  
**26.**  $(0, 9); m = -2$   
**27.**  $(0, 4); m = \frac{1}{2}$   
**28.**  $(0, 4); m = -\frac{1}{2}$   
**29.**  $(2, 1); m = -\frac{3}{2}$   
**30.**  $(-1, 0); m = \frac{2}{5}$   
**31.**  $(5, -4); m = 0$   
**32.**  $(5, -4); m$  is undefined.

In Exercises 33-54, use the given conditions to find an equation in slope-intercept form of each nonvertical line. Write vertical lines in the form x = h.

- **33.** Passing through (0, 1) and (1, 0)
- **34.** Passing through (0, 1) and (1, 3)Passing through (-1, 3) and (3, 3)
- **36.** Passing through (-5, 1) and (2, 7)
- **37.** Passing through (-2, -1) and (1, 1)
- **38.** Passing through (-1, -3) and (6, -9)
- **39.** Passing through  $\left(\frac{1}{2}, \frac{1}{4}\right)$  and (0, 2)
- 40. Passing through (4, -7) and (4, 3)
- 41. A vertical line through (5, 1.7)
- 42. A horizontal line through (1.4, 1.5)
- **43.** A horizontal line through (0, 0)
- 44. A vertical line through (0, 0)
- **45.** m = 0; y-intercept = 14
- **46.** m = 2; y-intercept = 5

**47.** 
$$m = -\frac{2}{3}$$
; y-intercept = -4

- **48.** m = -6; y-intercept = -3
- 49. x-intercept = -3; y-intercept = 4
- 50. x-intercept = -5; y-intercept = -2
- **51.** Parallel to y = 5; passing through (4, 7)
- **52.** Parallel to x = 5; passing through (4, 7)
- 53. Perpendicular to x = -4; passing through (-3, -5)
- 54. Perpendicular to y = -4; passing through (-3, -5)

#### In Exercises 55-64, find the slope and intercepts from the equation of the line. Sketch the graph of each equation.

| <b>55.</b> $y = 5x - 2$      | <b>50.</b> $y = -2x + 5$   |
|------------------------------|----------------------------|
| 57. $x + 2y - 4 = 0$         | <b>58.</b> $x = 3y - 9$    |
| <b>59.</b> $3x - 2y + 6 = 0$ | <b>60.</b> $2x = -4y + 15$ |
| <b>61.</b> $x - 5 = 0$       | <b>62.</b> $2y + 5 = 0$    |
| <b>63.</b> $x = 0$           | 64. $y = 0$                |

In Exercises 65-68, use the two-intercept form of the equation of a line.

- 65. Find an equation of the line whose x-intercept is 4 and y-intercept is 3.
- 66. Find an equation of the line whose x-intercept is -3 and y-intercept is 2.

67. Find the x- and y-intercepts of the graph of the equation 2x + 3y = 6.

68. Repeat Exercise 67 for the equation 3x - 4y + 12 = 0.

In Exercises 69–72, find the x and y-intercepts and sketch the graph of the equation

70. 3x - 4y = 1269. 2x - 3y = 1271. -5x + 2y = 1072. -4x + 5y = 20

**73.** Find an equation of the line passing through the points (2, 4)and (7, 9). Use the equation to show that the three points (2, 4)and (7, 9), and (-1, 1) are on the same line (collinear).

- 74. Use the technique of Exercise 73 to check whether the points (7, 2), (2, -3), and (5, 1) are on the same line.
- 75. Write the slope-intercept form of the equation of the line that passes through the origin and is parallel to the red line shown in the figure.



76. Write the slope-intercept form of the equation of the line that passes through the origin and is perpendicular to the red line shown in the figure in Exercise 75.

#### Exercises SECTION 1.3

# **Concepts and Vocabulary**

- **1.** In the functional notation y = f(x), x is the \_\_\_\_\_ variable.
- **2.** If f(-2) = 7, then -2 is in the \_\_\_\_\_ of the of f. function f and 7 is in the
- 3. If the point (9, -14) is on the graph of a function f, then f(9) =\_\_\_\_\_.
- 4. The average rate of change of f as x changes from x = a to

x = b is \_\_\_\_\_,  $a \neq b$ .

- 5. True or False. Every relation is a function.
- 6. True or False. If no horizontal line intersects the graph of a relation at more than one point, then the graph of the relation is the graph of a function.
- 7. True or False. The range of a function is the set of all values assigned to the elements in the domain of a function.
- 8. True or False. The average rate of change of a linear function is equal to its slope.

In Exercises 15-28, determine whether each equation defines y as a function of x.

15. x + y = 216. x = y - 117.  $y = \frac{1}{x}$ 18. xy = -1**19.** x = |y|**20.** x = |y - 1|21.  $y = \frac{1}{\sqrt{2x-5}}$ 22.  $y = \frac{1}{\sqrt{x^2 - 1}}$ 23. 2 - y = 3x24. 3x - 5y = 1525.  $x^2 + y^2 = 8$ 26.  $x = y^2$ **27.**  $x^2 + y^3 = 5$ 28.  $x + y^3 = 8$ 

In Exercises 29–32, let  $f(x) = x^2 - 3x + 1$ ,  $g(x) = \frac{2}{\sqrt{x}}$ , and  $h(x) = \sqrt{2 - x}$ . **29.** Find f(0), g(0), h(0), f(a), and f(-x). **30.** Find f(1), g(1), h(1), g(a), and  $g(x^2)$ . **31.** Find f(-1), g(-1), h(-1), h(c), and h(-x). **32.** Find f(4), g(4), h(4), g(2 + k), and f(a + k). **a.** f(0)**b.** f(1)c. f(2)**d.** f(-2)e. f(-x)**34.** Let  $g(x) = 2x + \sqrt{x^2 - 4}$ . Find each function value. **a.** g(0)**b.** g(1) c. g(2)d. g(-3)**e.** g(-x)

**33.** Let 
$$f(x) = \frac{2x}{\sqrt{4 - x^2}}$$
. Find each function value.

| In Exercises 37-52, find the domain of each function | ion. |
|------------------------------------------------------|------|
|------------------------------------------------------|------|

| In Exercises 57-52, into the                 | uomani oi cacii function.                  |
|----------------------------------------------|--------------------------------------------|
| <b>37.</b> $f(x) = -8x + 7$                  | <b>38.</b> $f(x) = 2x^2 - 11$              |
| <b>39.</b> $f(x) = \frac{1}{x-9}$            | <b>40.</b> $f(x) = \frac{1}{x+9}$          |
| <b>41.</b> $h(x) = \frac{2x}{x^2 - 1}$       | <b>42.</b> $h(x) = \frac{x-3}{x^2-4}$      |
| <b>43.</b> $G(x) = \frac{3x}{\sqrt{4-x}}$    | <b>44.</b> $f(x) = \frac{-2x}{\sqrt{x+2}}$ |
| <b>45.</b> $h(x) = \frac{\sqrt{x-1}}{x-2}$   | <b>46.</b> $H(x) = \frac{\sqrt{2-x}}{x-1}$ |
| <b>47.</b> $F(x) = \frac{x+4}{x^2+3x+2}$     | <b>48.</b> $F(x) = \frac{1-x}{x^2+5x+6}$   |
| <b>49.</b> $g(x) = \frac{\sqrt{x^2 + 1}}{x}$ | <b>50.</b> $g(x) = \frac{1}{x^2 + 1}$      |
| <b>51.</b> $s(x) = \sqrt{1 - x^2}$           | <b>52.</b> $K(x) = \sqrt{x^2 - 4}$         |
|                                              |                                            |

In Exercises 59-62, the graph of a function is given. Find the indicated function values.

**59.** f(-4), f(-1), f(3), f(5)



**60.** g(-2), g(1), g(3), g(4)



In Exercises 71-82, find the average rate of change of the function as x changes from a to b.

**71.** 
$$f(x) = -2x + 7; a = -1, b = 3$$
  
**72.**  $f(x) = 4x - 9; a = -2, b = 2$   
**73.**  $g(x) = 2x^2; a = 0, b = 5$   
**74.**  $g(x) = -4x^2; a = -1, b = 4$   
**75.**  $h(x) = x^2 - 1; a = -2, b = 0$   
**76.**  $h(x) = 2 - x^2; a = 3, b = 4$   
**77.**  $f(x) = (3 - x)^2; a = 1, b = 3$   
**78.**  $f(x) = (x - 2)^2; a = -1, b = 5$   
**79.**  $g(x) = x^3; a = -1, b = 3$   
**80.**  $g(x) = -x^3; a = -1, b = 3$   
**81.**  $h(x) = \frac{1}{x}; a = 2, b = 6$   
**82.**  $h(x) = \frac{4}{x + 3}; a = -2, b = 4$ 

In Exercises 83-90, find and simplify the difference quotient

of the form 
$$\frac{f(x) - f(a)}{x - a}, x \neq a$$
.  
83.  $f(x) = 2x, a = 3$   
84.  $f(x) = 3x + 2, a = 2$   
85.  $f(x) = -x^2, a = 1$   
86.  $f(x) = 2x^2, a = -1$   
87.  $f(x) = 3x^2 + x, a = 2$   
88.  $f(x) = -2x^2 + x, a = 3$   
89.  $f(x) = \frac{4}{x}, a = 1$   
90.  $f(x) = -\frac{4}{x}, a = 1$ 

## **Concepts and Vocabulary**

**SECTION 1.4** 

- **1.** A function f is decreasing if  $x_1 < x_2$  implies that
- A function f has a relative maximum at x = a if there is an interval (x<sub>1</sub>, x<sub>2</sub>) containing a such that \_\_\_\_\_\_ for every x in the interval (x<sub>1</sub>, x<sub>2</sub>).
- 3. A function is even if, for all x in the domain of f, we have
- A function that uses different rules for assigning output values on different parts of the domain is called a
- True or False. Functions can increase, decrease, or remain constant on different intervals within their domains.
- True or False. The average rate of change of an increasing function is positive.
- True or False. At a point on a graph where a function changes direction from increasing to decreasing, the function has a relative minimum.
- True or False. The graph of an odd function is symmetric with respect to the y-axis.

#### **Building Skills**

In Exercises 9–16, the graph of a function is given. For each function, determine the intervals over which the function is increasing, decreasing, or constant.



In Exercises 35–48, determine algebraically whether the given function is odd, even, or neither.

**35.**  $f(x) = 2x^4 + 4$ **36.**  $g(x) = 3x^4 - 5$ **37.**  $f(x) = 5x^3 - 3x$ **38.**  $g(x) = 2x^3 + 4x$ **39.** f(x) = 2x + 4**40.** g(x) = 3x + 7**41.**  $f(x) = \frac{1}{x^2 + 4}$ **42.**  $g(x) = \frac{x^2 + 2}{x^4 + 1}$ **43.**  $f(x) = \frac{x^3}{x^2 + 1}$ **44.**  $g(x) = \frac{x^4 + 3}{2x^3 - 3x}$ **45.**  $f(x) = \frac{x}{x^5 - 3x^3}$ **46.**  $g(x) = \frac{x^3 + 2x}{2x^5 - 3x}$ 

## **SECTION 1.5**

## **Concepts and Vocabulary**

1. The graph of y = f(x) - 3 is found by vertically shifting the graph of y = f(x) by three units \_\_\_\_\_.

**Exercises** 

- 2. The graph of y = f(x + 5) is found by horizontally shifting the graph of y = f(x) by five units to the \_\_\_\_\_\_.
- 3. The graph of y = f(-x) is found by reflecting the graph of y = f(x) about the \_\_\_\_\_.
- 4. The graph of y = -f(x) is found by reflecting the graph of y = f(x) about the \_\_\_\_\_.
- 5. True or False. The graph of y = f(bx) is a horizontal compression of the graph y = f(x) if b < 1.
- 6. True or False. The graphs of y = f(x) and y = f(x) + 1cannot be the same.
- 7. True or False. The graphs of y = f(x) and y = f(-x) cannot be the same.
- 8. True or False. Combining horizontal and vertical shifts preserves the shape of the original graph.

In Exercises 9-22, describe the transformations that produce the gr

| the | gr       | aphs         | s of             | g and h                 | from the               | graph of         | t.            |
|-----|----------|--------------|------------------|-------------------------|------------------------|------------------|---------------|
| 9.  | f(.      | x) =         | = V              | x                       |                        |                  |               |
|     | a.<br>b. | g(x)<br>h(x) | ) =              | $\sqrt{x} + \sqrt{x} -$ | 2                      |                  |               |
| 10. | f(       | x) =         | =  x             | 1                       |                        |                  |               |
| 10. | a.       | g(x          | ) =              | x  +                    | 1                      |                  |               |
|     | b.       | h(x          | ) =              | x  -                    | 2                      |                  |               |
| 11. | f(.      | x) =         | = x <sup>2</sup> |                         |                        |                  |               |
|     | a.       | g(x)         | ) =              | (x + 1)                 | $)^{2}$                |                  |               |
|     | D.       | h(x          | ) =              | (x - 2)                 | )-                     |                  |               |
| 12. | f(.      | x) =         | = -              |                         |                        |                  |               |
|     |          |              | x                | 1                       |                        |                  |               |
|     | a.       | g(x          | ) =              | $\frac{1}{r+2}$         |                        |                  |               |
|     |          | 11           | `                | 1                       |                        |                  |               |
|     | D.       | h(x          | ) =              | x - 3                   |                        |                  |               |
| 13. | f(.      | x) =         | = V              | x                       |                        |                  |               |
|     | a        | g(x          | ) =              | $\sqrt{r+}$             | 1 - 2                  |                  |               |
|     | b.       | h(x)         | ) =              | $\sqrt{x}$ -            | 1 + 3                  |                  |               |
|     |          |              |                  |                         |                        |                  |               |
|     |          |              |                  | 14.                     | f(x) =                 | $x^2$            |               |
|     |          |              |                  |                         | a. $g(x)$              | $= -x^2$         |               |
|     |          |              |                  |                         | <b>b.</b> $h(x)$       | $=(-x)^{2}$      |               |
|     |          |              |                  | 15.                     | f(x) =                 | x                |               |
|     |          |              |                  |                         | a. $g(x)$              | = - x            |               |
|     |          |              |                  |                         | <b>b.</b> $h(x)$       | =  -x            |               |
|     |          |              |                  | 16.                     | f(x) =                 | $\sqrt{x}$       |               |
|     |          |              |                  |                         | a. $g(x)$              | $= 2\sqrt{x}$    |               |
|     |          |              |                  |                         | <b>b.</b> $h(x)$       | $=\sqrt{2x}$     |               |
|     |          |              |                  |                         |                        | 1                |               |
|     |          |              |                  | 17.                     | f(x) =                 | x                |               |
|     |          |              |                  |                         | ( )                    | 2                |               |
|     |          |              |                  |                         | a. $g(x)$              | = - x            |               |
|     |          |              |                  |                         | h h(w)                 | _ 1              |               |
| 1   |          |              |                  |                         | <b>D.</b> $n(x)$       | $\frac{1}{2x}$   |               |
| /   |          |              |                  | 18                      | $f(\mathbf{r}) =$      | r.3              |               |
| 1 × |          |              |                  | 10.                     | J(x) =                 | - ( /            | 13 1 1        |
| 2 4 |          |              |                  |                         | a. $g(x)$<br>b. $h(x)$ | = (x - x)        | $(1)^{3} + 2$ |
|     |          |              |                  |                         | <b>D.</b> $n(x)$       | (1 +             | 1) + 2        |
|     |          |              |                  | 19.                     | f(x) =                 | $\sqrt{x}$       |               |
| 1   |          |              |                  |                         | a. $g(x)$              | $= -\sqrt{x}$    | + 1           |
|     |          |              |                  |                         | <b>D.</b> $n(x)$       | $= \sqrt{-x}$    | + 1           |
| + > |          |              |                  | 20.                     | f(x) =                 | [x]              | 1             |
|     |          |              |                  |                         | a. $g(x)$              | = [x - 1]        | 1 + 2         |
|     |          |              |                  |                         | <b>b.</b> $h(x)$       | = 3[x] - 3[x]    | - 1           |
| 1   |          |              |                  | 21.                     | f(x) =                 | Vx 3             | 1             |
|     |          |              |                  |                         | a. $g(x)$              | $=\sqrt{x} +$    | 1             |
|     |          |              |                  |                         | <b>D.</b> $h(x)$       | $= \sqrt{x} +$   | 1             |
|     |          |              |                  | 22.                     | f(x) =                 | Vx               |               |
| 3   | ×        |              |                  |                         | a. $g(x)$              | $= 2\sqrt[3]{1}$ | -x + 4        |
|     |          |              |                  |                         | <b>b.</b> $h(x)$       | $= -\nabla x$    | -1+3          |

In Exercises 23-34, match each function with its graph (a)-(l). 24.  $v = -\sqrt{-x}$ **23.** y = -|x| + 1**26.**  $y = \frac{1}{2}|x|$ **25.**  $v = \sqrt{x^2}$ **27.**  $y = \sqrt{x+1}$ **28.** y = 2|x| - 3**29.**  $y = 1 - 2\sqrt{x}$ **30.** y = -|x - 1| + 132.  $y = -x^2 + 3$ **31.**  $y = (x - 1)^2$ **33.**  $y = -2(x - 3)^2 - 1$ 34.  $y = 3 - \sqrt{1 - x}$ (h) (9)



| in Exercises 55–62, graph each function by starting with a      |
|-----------------------------------------------------------------|
| function from the library of functions and then using the tech- |
| niques of shifting, compressing, stretching, and/or reflecting. |

| <b>35.</b> $f(x) = x^2 - 2$         | <b>36.</b> $f(x) = x^2 + 3$         |
|-------------------------------------|-------------------------------------|
| <b>37.</b> $g(x) = \sqrt{x} + 1$    | <b>38.</b> $g(x) = \sqrt{x} - 4$    |
| <b>39.</b> $f(x) =  x  + 2$         | <b>40.</b> $f(x) =  x  - 1$         |
| <b>41.</b> $f(x) = x^3 + 2$         | <b>42.</b> $f(x) = x^3 - 1$         |
| <b>43.</b> $f(x) = \frac{1}{x} + 1$ | <b>44.</b> $f(x) = \frac{1}{x} - 2$ |
| <b>45.</b> $f(x) = (x - 3)^3$       | 46. $f(x) = (x + 2)^3$              |
| <b>47.</b> $f(x) = \sqrt{x-1}$      | <b>48.</b> $f(x) = \sqrt{x+2}$      |
| <b>49.</b> $h(x) =  x + 1 $         | <b>50.</b> $h(x) =  x - 2 $         |
| <b>51.</b> $f(x) = (x + 1)^3$       | <b>52.</b> $f(x) = (x - 3)^3$       |
| <b>53.</b> $f(x) = \frac{1}{x-3}$   | 54. $f(x) = \frac{1}{x+2}$          |
| <b>55.</b> $f(x) = \sqrt{-x}$       | <b>56.</b> $f(x) = -\sqrt{x}$       |
| <b>57.</b> $f(x) = -x^2$            | <b>58.</b> $f(x) = -x^3$            |
| <b>59.</b> $f(x) = 2x^2$            | <b>60.</b> $f(x) = \frac{1}{3}x^2$  |
| <b>61.</b> $f(x) = 2 x $            | <b>62.</b> $f(x) = \frac{1}{3} x $  |

In Exercises 63–74, graph each function by starting with a function from the library of functions and then combining shifting and reflecting techniques.

| <b>63.</b> $f(x) = (x - 2)^2 + 1$     | 64. $f(x) = (x - 3)^2 - 5$            |
|---------------------------------------|---------------------------------------|
| <b>65.</b> $f(x) = 5 - (x - 3)^2$     | <b>66.</b> $f(x) = 2 - (x + 1)^2$     |
| <b>67.</b> $f(x) = \sqrt{x+1} - 3$    | <b>68.</b> $f(x) = \sqrt{x-2} + 1$    |
| <b>69.</b> $f(x) = \sqrt{1-x} + 2$    | <b>70.</b> $f(x) = -\sqrt{x+2} - 3$   |
| <b>71.</b> $f(x) =  x - 1  - 2$       | <b>72.</b> $f(x) = - x + 3  + 1$      |
| <b>73.</b> $f(x) = \frac{1}{x-1} + 3$ | <b>74.</b> $f(x) = 2 - \frac{1}{x+2}$ |

In Exercises 75–82, graph each function by starting with a function from the library of functions and then combining shifting, compressing, stretching, and/or reflecting techniques

| <b>75.</b> $f(x) = 2(x+1)^2 - 1$      | <b>76.</b> $f(x) = \frac{1}{3}(x+1)^2 + 2$  |
|---------------------------------------|---------------------------------------------|
| 77. $f(x) = 2 - \frac{1}{2}(x - 3)^2$ | <b>78.</b> $f(x) = 1 - 3(x - 3)^2$          |
| <b>79.</b> $f(x) = 2\sqrt{x+1} - 3$   | <b>80.</b> $f(x) = \sqrt{2x - 2} + 1$       |
| <b>81.</b> $f(x) = -2 x - 1  + 2$     | <b>82.</b> $f(x) = -\frac{1}{2} 3 - x  - 1$ |

## SECTION 1.6

## Exercises

### **Concepts and Vocabulary**

- **1.**  $(f \cdot g)(x) =$ \_\_\_\_
- **2.** The domain of the function f + g consists of those values of *x* that are \_\_\_\_\_\_ to the domains of *f* and *g*.
- 3. The composition of the function f with the function g is written as  $f \circ g$  and is defined by  $f \circ g(x) =$ \_\_\_\_\_\_.
- The domain of the composite function *f* ∘ *g* consists of those values of *x* in the domain of *g* for which *g*(*x*)
- 5. True or False. We always have  $f \circ g = g \circ f$ .
- 6. True or False. If f(1) = 2 and g(2) = 1, then  $(f \circ g)(2) = 2$ .
- **7. True or False.** The domain of  $f \cdot g$  and the domain of  $\frac{f}{g}$  are always the same.
- True or False. A function may be decomposed into simpler functions in several different ways.

9. 
$$(f + g)(-2)$$
 10.  $(f + g)(2)$ 

 11.  $(f - g)(4)$ 
 12.  $(f - g)(-1)$ 

 13.  $(f \cdot g)(-1)$ 
 14.  $(f \cdot g)(2)$ 

 15.  $\left(\frac{f}{g}\right)(-2)$ 
 16.  $\left(\frac{f}{g}\right)(2)$ 

 17.  $(f \circ g)(1)$ 
 18.  $(g \circ f)(1)$ 

 19.  $(f \circ g)(-3)$ 
 20.  $(g \circ f)(-3)$ 

In Exercises 21–24, functions f and g are given. Find each of the given values.

**a.** 
$$(f + g)(-1)$$
  
**b.**  $(f - g)(0)$   
**c.**  $(f \cdot g)(2)$   
**d.**  $\left(\frac{f}{g}\right)(1)$ 

**21.** 
$$f(x) = 2x; g(x) = -x$$
  
**22.**  $f(x) = 1 - x^2; g(x) = x + 1$   
**23.**  $f(x) = \frac{1}{\sqrt{x+2}}; g(x) = 2x + 1$ 

**24.** 
$$f(x) = \frac{x}{x^2 - 6x + 8}; g(x) = 3 - x$$

In Exercises 25–38, functions *f* and *g* are given. Find each of the following functions and state its domain.

a. f + g b. f - g c.  $f \cdot g$ d.  $\frac{f}{g}$  e.  $\frac{g}{f}$ 25.  $f(x) = x - 3; g(x) = x^2$ 26.  $f(x) = 2x - 1; g(x) = x^2$ 27.  $f(x) = x^3 - 1; g(x) = 2x^2 + 5$ 28.  $f(x) = x^2 - 4; g(x) = x^2 - 6x + 8$ 29.  $f(x) = 2x - 1; g(x) = \sqrt{x}$ 30.  $f(x) = x - 1; g(x) = \sqrt{x}$ 31.  $f(x) = x - 6; g(x) = \sqrt{x - 3}$ 32.  $f(x) = x + 2; g(x) = \sqrt{1 - x}$ 33.  $f(x) = 1 - \frac{2}{x + 1}; g(x) = \frac{1}{x}$ 

#### **Building Skills**

In Exercises 9–20, use the graphs of f and g shown in the figure to evaluate each expression.



In Exercises 43 and 44, use each diagram to evaluate  $(g \circ f)(x)$ . Then evaluate  $(g \circ f)(2)$  and  $(g \circ f)(-3)$ .



In Exercises 45–56, let f(x) = 2x + 1 and  $g(x) = 2x^2 - 3$ . Evaluate each expression.

 45.  $(f \circ g)(2)$  46.  $(g \circ f)(2)$  

 47.  $(f \circ g)(-3)$  48.  $(g \circ f)(-5)$  

 49.  $(f \circ g)(0)$  50.  $(g \circ f)(\frac{1}{2})$  

 51.  $(f \circ g)(-c)$  52.  $(f \circ g)(c)$  

 53.  $(g \circ f)(a)$  54.  $(g \circ f)(-a)$  

 55.  $(f \circ f)(1)$  56.  $(g \circ g)(-1)$ 

In Exercises 57–62, the functions f and g are given. Find  $f \circ g$  and its domain.

57. 
$$f(x) = \frac{2}{x+1}$$
;  $g(x) = \frac{1}{x}$   
58.  $f(x) = \frac{1}{x-1}$ ;  $g(x) = \frac{2}{x+3}$   
59.  $f(x) = \sqrt{x-3}$ ;  $g(x) = 2 - 3x$   
60.  $f(x) = \frac{x}{x-1}$ ;  $g(x) = 2 + 5x$   
61.  $f(x) = |x|$ ;  $g(x) = x^2 - 1$   
62.  $f(x) = 3x - 2$ ;  $g(x) = |x - 1|$ 

In Exercises 63–78, the functions *f* and *g* are given. Find each composite function and describe its domain.

a. fog b. gof c. fof d. gog 63. f(x) = 2x - 3; g(x) = x + 4> 64. f(x) = x - 3; g(x) = 3x - 565. f(x) = 1 - 2x;  $g(x) = 1 + x^2$ **66.** f(x) = 2x - 3;  $g(x) = 2x^2$ 67.  $f(x) = 2x^2 + 3x$ ; g(x) = 2x - 168.  $f(x) = x^2 + 3x$ ; g(x) = 2x**69.**  $f(x) = x^2$ ;  $g(x) = \sqrt{x}$ **70.**  $f(x) = x^2 + 2x$ ;  $g(x) = \sqrt{x+2}$ 71.  $f(x) = \frac{1}{2x - 1}; g(x) = \frac{1}{x^2}$ 72.  $f(x) = x - 1; g(x) = \frac{x}{x + 1}$ 73.  $f(x) = \sqrt{x-1}$ ;  $g(x) = \sqrt{4-x}$ 74.  $f(x) = x^2 - 4$ ;  $g(x) = \sqrt{4 - x^2}$ **75.**  $f(x) = \frac{1-x}{x+2}; g(x) = \frac{x+3}{x-4}$ **76.**  $f(x) = \frac{x+2}{x-3}; g(x) = \frac{x+1}{x-1}$ 

77. 
$$f(x) = 1 + \frac{1}{x}; g(x) = \frac{1+x}{1-x}$$
  
78.  $f(x) = \sqrt[3]{x+1}; g(x) = x^3 + 1$ 

In Exercises 79–82, let g(x) be a piecewise function given below. For each f, find the domain of the composite function  $f \circ g$ .

2 3 4 6 **79.**  $f(x) = \frac{3}{x-3}$ 80.  $f(x) = \frac{2}{2-x}$ 81.  $f(x) = \sqrt{3}$ 82.  $f(x) = \sqrt{x-2}$  In Exercises 87-96, express the given function H as a composition of two functions f and g such that  $H(x) = (f \circ g)(x)$ .

87. 
$$H(x) = \sqrt{x + 2}$$
 88.  $H(x) = |3x + 2|$ 

 89.  $H(x) = (x^2 - 3)^{10}$ 
 90.  $H(x) = \sqrt{3x^2 + 5}$ 

 91.  $H(x) = \frac{1}{3x - 5}$ 
 92.  $H(x) = \frac{5}{2x + 3}$ 

 93.  $H(x) = \sqrt[3]{x^2 - 7}$ 
 94.  $H(x) = \sqrt[4]{x^2 + x + 1}$ 

 95.  $H(x) = \frac{1}{|x^3 - 1|}$ 
 96.  $H(x) = \sqrt[3]{1 + \sqrt{x}}$ 

In Exercises 97–102, the functions f and g are given. Find the average rate of change of the composite function  $f \circ g$  as x changes from a to b.

97. 
$$f(x) = x^2 + 2$$
;  $g(x) = 1 - 2x$ ;  $a = 1, b = 2$   
98.  $f(x) = 1 - x^2$ ;  $g(x) = 1 + 3x$ ;  $a = -1, b = 1$   
99.  $f(x) = x^3 + 2$ ;  $g(x) = 1 - x^2$ ;  $a = 1, b = 2$   
100.  $f(x) = 1 - x^3$ ;  $g(x) = x^2 + 1$ ;  $a = -1, b = 0$   
101.  $f(x) = \frac{1}{4 + x}$ ;  $g(x) = x^2 - 1$ ;  $a = 1, b = 2$   
102.  $f(x) = \frac{1}{2 + x}$ ;  $g(x) = x^2 + 1$ ;  $a = 0, b = 2$ 



# **Concepts and Vocabulary**

SECTION 1.7

- A function *f* is one-to-one if for any two different numbers x<sub>1</sub> and x<sub>2</sub>, x<sub>1</sub> ≠ x<sub>2</sub>, in the domain of *f* we have \_\_\_\_\_\_\_\_.
   A function *f* is one-to-one if every horizontal line intersects the graph of *f* at no more than \_\_\_\_\_\_\_.
   *f*<sup>-1</sup> ∘ *f*(x) = \_\_\_\_\_\_\_\_.
   *f*<sup>-1</sup> ∘ *f*(x) = \_\_\_\_\_\_\_\_.
   The graph of *f*<sup>-1</sup> is a reflection of the graph of *f* about the line \_\_\_\_\_\_\_.
   True or False. If a function *f* is one-to-one, then it has inverse *f*<sup>-1</sup>.
   True or False. *f*<sup>-1</sup>(x) = 1/*f*(x).
   True or False. The domain of *f*<sup>-1</sup> equals the domain of *f*.
   True or False. If a point (*a*, *b*) is on the graph of a one-to one
  - **Building Skills**

In Exercises 9–16, the graph of a function is given. Use the horizontal-line test to determine whether the function is one-to-one. 9. 10.

function f, then the point (b, a) is on the graph of  $f^{-1}$ .





In Exercises 17–24, assume that the function f is one-to-one with domain:  $(-\infty, \infty)$ . **17.** If f(2) = 7, find  $f^{-1}(7)$ . **18.** If  $f^{-1}(4) = -7$ , find f(-7). **19.** If f(-1) = 2, find  $f^{-1}(2)$ . **20.** If  $f^{-1}(-3) = 5$ , find f(5). **21.** For f(x) = 2x - 3, find each of the following. **b.**  $f^{-1}(3)$ a. f(3) c.  $(f \circ f^{-1})(19)$ **d.**  $(f \circ f^{-1})(5)$ **22.** For  $f(x) = x^3$ , find each of the following. **b.**  $f^{-1}(8)$ **d.**  $(f^{-1} \circ f)(27)$ a. f(2)c.  $(f \circ f^{-1})(15)$ 23. For  $f(x) = x^3 + 1$ , find each of the following. **a.** f(1)**b.**  $f^{-1}(2)$ c.  $(f \circ f^{-1})(269)$ 24. For  $g(x) = \sqrt[3]{2x^3 - 1}$ , find each of the following. a. g(1) **b.**  $g^{-1}(1)$ **c.**  $(g^{-1} \circ g)(135)$ 

- Determine which of the functions described below are one-toone. The function that assigns to each shirt in a store its
   a. color.
  - b. price.
  - c. bar code.
- 26. Determine which of the functions described below are one-to-one. The function that assigns to each person in the United States their a. Social Security number.

b. first name.

c. last name.

In Exercises 51–60, the function f is one-to-one. Find the  $f^{-1}$  and verify your answer. Also find the domain and range of the given function f.

| <b>51.</b> $f(x) = 3x - 1$                      | <b>52.</b> $f(x) = 2x + 3$               |
|-------------------------------------------------|------------------------------------------|
| <b>53.</b> $f(x) = \sqrt[3]{\frac{x+1}{3}} + 2$ | 54. $f(x) = \sqrt[3]{\frac{x-2}{3}} - 1$ |
| <b>55.</b> $f(x) = (3x - 1)^3 + 2$              | 56. $f(x) = (2x + 1)^3 - 3$              |
| <b>57.</b> $f(x) = \frac{2}{1+x}$               | 58. $f(x) = 1 - \frac{1}{x+1}$           |
| <b>59.</b> $f(x) = \frac{x+1}{x-2}$             | <b>60.</b> $f(x) = \frac{1-2x}{1+x}$     |

In Exercises 61–64, sketch the graph of f using appropriate transformations and confirm that f is one-to-one by using the horizontal line test. Find  $f^{-1}$ . Find the domain and range of f and  $f^{-1}$ .

**61.**  $f(x) = x^2 + 1, x \ge 0$  **62.**  $f(x) = x^2 - 4, x \le 0$  **63.**  $f(x) = -x^2 + 2, x \le 0$ **64.**  $f(x) = -x^2 - 1, x \ge 0$ 

In Exercises 65–76, sketch the graph of the function and its inverse on the same coordinate axes.

 65. f(x) = 15 - 3x 66. g(x) = 2x + 5 

 67.  $f(x) = \sqrt{4 - x^2}, x \ge 0$  68.  $f(x) = -\sqrt{9 - x^2}, x \ge 0$  

 69.  $f(x) = \sqrt{x} + 3$  70.  $f(x) = 4 - \sqrt{x}$  

 71.  $g(x) = \sqrt[3]{x + 1}$  72.  $h(x) = \sqrt[3]{1 - x}$  

 73.  $f(x) = \frac{1}{x - 1}, x \ne 1$  74.  $g(x) = 1 - \frac{1}{x}, x \ne 0$  

 75.  $f(x) = 2 + \sqrt{x + 1}$  76.  $f(x) = -1 + \sqrt{x + 2}$ 

In Exercises 27–30, determine the order and write down the steps to undo the following sequence of actions.

27. First: Open the fridge door. Second: Take the milk out of the fridge.

28. First: Put socks on. Second: Put shoes on.

29. First: Wake up. Second: Put makeup on.

30. First: Dig a hole. Second: Plant a tree.

In Exercises 31–34 determine the order and steps to undo the following sequence of actions. Write the original function and the inverse function associated with the final result of these actions.

31. First: Multiply by 2. Second: Add 3.

32. First: Subtract 2. Second: Multiply by 3.

33. First: Cube it. Second: Add 2.

34. First: Subtract 3. Second: Cube it.

In Exercises 35–42, show that f and g are inverses of each other by verifying that f(g(x)) = x = g(f(x)).

35.  $f(x) = 3x + 1; g(x) = \frac{x - 1}{3}$ 36.  $f(x) = 2 - 3x; g(x) = \frac{2 - x}{3}$ 37.  $f(x) = x^3; g(x) = \sqrt[3]{x}$ 38.  $f(x) = \frac{1}{x}; g(x) = \frac{1}{x}$ 39.  $f(x) = 2x^5 + 1; g(x) = \sqrt[5]{\frac{x - 1}{2}}$ 40.  $f(x) = (1 - 3x)^3; g(x) = \frac{1 - \sqrt[3]{x}}{3}$ 41.  $f(x) = \frac{x - 1}{x + 2}; g(x) = \frac{1 + 2x}{1 - x}$ 42.  $f(x) = \frac{3x + 2}{x - 1}; g(x) = \frac{x + 2}{x - 3}$ 

In Exercises 77–80, assume that the given function is one-toone. Find the inverse of the function. Also find the domain and the range of the given function.

**77.** 
$$f(x) = \frac{x+1}{x-2}, x \neq 2$$
  
**78.**  $g(x) = \frac{x+2}{x+1}, x \neq -1$   
**79.**  $f(x) = \frac{1-2x}{1+x}, x \neq -1$   
**80.**  $h(x) = \frac{x-1}{x-3}, x \neq 3$ 

## **SECTION 7.1**

## Exercises

## **Concepts and Vocabulary**

- The ordered pair (a, b) is a(n) \_\_\_\_\_\_ of a system of equations in x and y providing that when x is replaced with a and y is replaced with b, the resulting equations are true.
- The two nongraphical methods for solving a system of equations are the \_\_\_\_\_\_ and \_\_\_\_\_\_ methods.
- 3. If in the process of solving a system of equations you get an equation of the form 0 = k, where k is not zero, then the system is \_\_\_\_\_\_.
- **4.** If in the process of solving a system of equations you get an equation of the form 0 = 0, then the system has
- True or False. A system consisting of two identical equations has no solution.
- 6. True or False. If in the process of solving a system of two equations in x and y you get the equation 5 = 5, then the system has exactly one solution.
- 7. True or False. If x = 4, y = -7 is the solution of a system of two equations in x and y, then the lines determined by the two equations intersect at the point (4, -7).
- 8. True or False. When solving  $\begin{cases} 3x 2y = 14\\ 9x + 8y = 23 \end{cases}$



by the addition method, we can eliminate *x* by multiplying the first equation by -3 and adding the equations.

### **Building Skills**

In Exercises 9–14, determine which ordered pairs are solutions of each system of equations.

| 9.  | $\begin{cases} 2x + 3y = 3\\ 3x - 4y = 13 \end{cases} (1, -3), (3, -1), (6, 3), (5, \frac{1}{2}) \end{cases}$                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. | $\begin{cases} x + 2y = 6\\ 3x + 6y = 18 \end{cases} (2, 2), (-2, 4), (0, 3), (1, 2)$                                                                                                              |
| 11. | $\begin{cases} 5x - 2y = 7\\ -10x + 4y = 11 \end{cases} \begin{pmatrix} \frac{5}{4}, 1\\ \frac{1}{4}, 1 \end{pmatrix}, \begin{pmatrix} 0, \frac{11}{4}\\ \frac{1}{4}, (1, -1), (3, 4) \end{cases}$ |
| 12. | $\begin{cases} x - 2y = -5 \\ 3x - y = 5 \end{cases} (1, 3), (-5, 0), (3, 4), (3, -4)$                                                                                                             |
| 13. | $\begin{cases} x + y = 1\\ \frac{1}{2}x + \frac{1}{3}y = 2 \end{cases} (0, 1), (1, 0), \left(\frac{2}{3}, \frac{3}{2}\right), (10, -9)$                                                            |
| 14. | $\begin{cases} \frac{2}{x} + \frac{3}{y} = 2\\ \frac{6}{x} + \frac{18}{y} = 9 \end{cases}$ (3, 2), (2, 3), (4, 3), (3, 4)                                                                          |

In Exercises 15–24, estimate the solution(s) (if any) of each system by the graphical method. Check your solution(s). For any dependent equations, write your answer with x being arbitrary

| arbitrary.                                                                 |                                                                              |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $\begin{array}{l} 15. \begin{cases} x+y=3\\ x-y=1 \end{cases} \end{array}$ | <b>16.</b> $\begin{cases} x + y = 10 \\ x - y = 2 \end{cases}$               |
| <b>17.</b> $\begin{cases} x + 2y = 6 \\ 2x + y = 6 \end{cases}$            | $18. \begin{cases} 2x - y = 4\\ x - y = 3 \end{cases}$                       |
| <b>19.</b> $\begin{cases} 3x - y = -9 \\ y = 3x + 6 \end{cases}$           | <b>20.</b> $\begin{cases} 5x + 2y = 10 \\ y = -\frac{5}{2}x - 5 \end{cases}$ |
| $\begin{aligned} 21. \begin{cases} x + y = 7\\ y = 2x \end{aligned}$       | $22. \begin{cases} y - x = 2\\ y + x = 9 \end{cases}$                        |
| <b>23.</b> $\begin{cases} 3x + y = 12 \\ y = -3x + 12 \end{cases}$         | <b>24.</b> $\begin{cases} 2x + 3y = 6\\ 6y = -4x + 12 \end{cases}$           |
|                                                                            |                                                                              |

In Exercises 25–38, determine whether each system is consistent or inconsistent. If the system is consistent, determine whether the equations are dependent or independent. Do not solve the system.

| <b>25.</b> $\begin{cases} y = -2x + 3 \\ y = 3x + 5 \end{cases}$                | <b>26.</b> $\begin{cases} 3x + y = 5 \\ 2x + y = 4 \end{cases}$                |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $\begin{cases} 2x + 3y = 5\\ 3x + 2y = 7 \end{cases}$                           | <b>28.</b> $\begin{cases} 2x - 4y = 5\\ 3x + 5y = -6 \end{cases}$              |
| <b>29.</b> $\begin{cases} 3x + 5y = 7\\ 6x + 10y = 14 \end{cases}$              | <b>30.</b> $\begin{cases} 3x - y = 2\\ 9x - 3y = 6 \end{cases}$                |
| <b>31.</b> $\begin{cases} x + 2y = -5\\ 2x - y = 4 \end{cases}$                 | 32. $\begin{cases} x + 2y = -2 \\ 2x - 3y = 5 \end{cases}$                     |
| <b>33.</b> $\begin{cases} 2x - 3y = 5\\ 6x - 9y = 10 \end{cases}$               | <b>34.</b> $\begin{cases} 3x + y = 2\\ 15x + 5y = 15 \end{cases}$              |
| $35. \begin{cases} -3x + 4y = 5\\ \frac{9}{2}x - 6y = \frac{15}{2} \end{cases}$ | $36. \begin{cases} 6x + 5y = 11\\ 9x + \frac{15}{2}y = 21 \end{cases}$         |
| 37. $\begin{cases} 7x - 2y = 3\\ 11x - \frac{3}{2}y = 8 \end{cases}$            | <b>38.</b> $\begin{cases} 4x + 7y = 10\\ 10x + \frac{35}{2}y = 25 \end{cases}$ |

In Exercises 39-48, solve each system of equations by the substitution method. Check your solutions. For any dependent equations, write your answer in the ordered pair form given in Example 5.

**39.**  $\begin{cases} y = 2x + 1 \\ 5x + 2y = 9 \end{cases}$ **40.**  $\begin{cases} x = 3y - 1 \\ 2x - 3y = 7 \end{cases}$ **41.**  $\begin{cases} 3x - y = 5 \\ x + y = 7 \end{cases}$ **42.**  $\begin{cases} 2x + y = 2\\ 3x - y = -7 \end{cases}$ 43.  $\begin{cases} 2x - y = 5 \\ -4x + 2y = 7 \end{cases}$ 44.  $\begin{cases} 3x + 2y = 5 \\ -9x - 6y = 15 \end{cases}$ **45.**  $\begin{cases} x - y = 2 \\ x^2 - 4x + y^2 = -2 \end{cases}$  **46.**  $\begin{cases} 2x - y = 1 \\ x^2 - 8y + y^2 = -6 \end{cases}$ 47.  $\begin{cases} x - 2y = 5 \\ -3x + 6y = -15 \end{cases}$ **48.**  $\begin{cases} x + y = 3 \\ 2x + 2y = 6 \end{cases}$ 

In Exercises 49-58, solve each system of equations by the elimination method. Check your solutions. For any dependent equations, write your answer as in Example 5.

|   | 49.                                                                       | $\begin{cases} x \\ x \end{cases}$ | -y<br>+y         | = 1<br>= 5   |             |   |    | 50  | . {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x - 3x + 3 | 3y =<br>2y =          | = 5<br>= 14    |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |     |     |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                            |
|---|---------------------------------------------------------------------------|------------------------------------|------------------|--------------|-------------|---|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|-----|-----|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|
|   | 51.                                                                       | {                                  | x + x + x        | y =<br>3y =  | = 0<br>= 3  |   |    | 52  | . {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x + 3x +                                  | y =<br>y =            | 3<br>1         |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |     |     |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                            |
|   | <b>53.</b> $\begin{cases} x^2 + 2y^2 = 12\\ -5x^2 + 7y^2 = 8 \end{cases}$ |                                    |                  |              |             |   | 54 | . { | $x^2 - 3x^2 - 3$ | $- 6y^2$<br>+ $2y^2$                      | = 19<br>$= 7^{\circ}$ | 9<br>7         |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                    |     |     |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                            |
|   | 55.                                                                       | {_                                 | x - 2x - 2x - 2x | - y<br>+ 2y  | = 2<br>= 5  | : |    | 56  | . {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x + 2x +                                  | y =<br>2y =           | = 5<br>= -1    | 0       | In Exe<br>equati | ercis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es 59<br>For  | –78,<br>any        | use | any | meth<br>nt ea | od t<br>uati | to sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ve ea<br>write                        | ch sy                      |
|   | 57.                                                                       | {4.<br>2.                          | x + x + x        | 6y =<br>3y = | = 12<br>= 6 |   |    | 58  | • {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4x - 8x                                   | + 7                   | y = y<br>y = 0 | -3<br>6 | in Exa           | ample 2x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e 5.<br>y     | = 9                |     |     | 6             | 0. {         | x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2y =                                  | 10                         |
|   |                                                                           | •                                  |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 61. {            | 2x - 2x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3y =<br>5y =  | = 5<br>= 2         |     |     | 6             | 2. {         | x - 4x -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2y =<br>y =                           | -6<br>= 6                  |
|   |                                                                           | •                                  |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 63.              | x + 2x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3y :<br>3y :  | = 2<br>= 7         |     |     | 6             | 4. {         | 3x - x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4y =<br>3y +                          | = 11                       |
|   |                                                                           |                                    |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 65.              | 3x + 2x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y :<br>3y :   | = 7<br>= 9<br>- 11 |     |     | 6             | $\int$       | x =<br>3x -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5y +<br>- 4y                          | = 0                        |
| • |                                                                           |                                    |                  | •            | •           | • | •  | •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                         | •                     | •              |         | . (.             | 5x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2y .          | - 11               |     |     | 0             |              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y                                     | $=\frac{2x}{x}$            |
|   |                                                                           | •                                  |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 67.              | r +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{x}{4}$ | $+\frac{y}{6}$     | = 1 | 7   | 6             | 8. {         | $\frac{x}{3} + \frac{x}{3} + \frac{x}{3} - \frac{x}{3} + \frac{x}$ | $\frac{y}{5} =$                       | 12                         |
|   |                                                                           | •                                  |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 69.              | x - 2x +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $y^2 = 3y =$  | = 2<br>= 3         | l   | ,   | 7             | 0. {         | x + y - y = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2y =<br>$x^2 =$                       | 6                          |
|   |                                                                           |                                    |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 71.              | $5x - x^2 + x^2 + x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2y = y^2 =$  | = 7                |     |     | 7             | 2. {         | $x - x^2 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2y =<br>$y^2 =$                       | = -5<br>= 25               |
|   |                                                                           |                                    |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         | 73.              | $x^2 + x^2 - x^2 $ | $y^2 = y^2 =$ | = 20<br>= 12       |     |     | 7             | 4. {         | $x^2$<br>$4x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - y <sup>2</sup><br>+ 5y <sup>2</sup> | $2^{2} = 9$<br>$2^{2} = 1$ |
|   |                                                                           |                                    |                  |              |             |   |    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                |         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |                    |     |     |               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                            |

olve each system of , write your answer as

 $y = \frac{2x+1}{3}$ 

 $-y^2 = 9$  $+5v^2 = 180$