

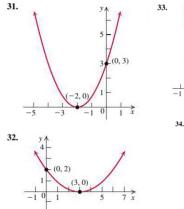

Exercises

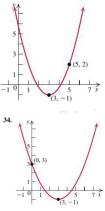
#### **Building Skills**

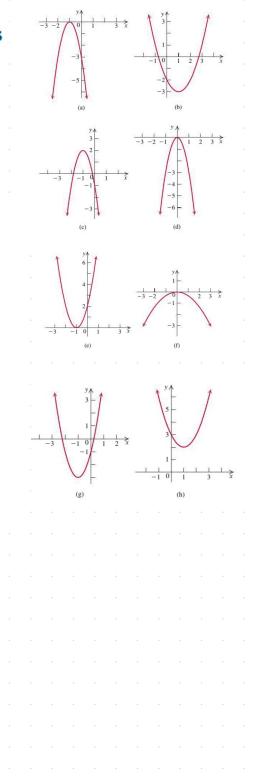
In Exercises 9–16, match each quadratic function with its graph.

**SECTION 2.1** 

| 9. $y = -\frac{1}{3}x^2$        | <b>10.</b> $y = -3x^2$           |
|---------------------------------|----------------------------------|
| <b>11.</b> $y = -3(x + 1)^2$    | <b>12.</b> $y = 2(x + 1)^2$      |
| <b>13.</b> $y = (x - 1)^2 + 2$  | <b>14.</b> $y = (x - 1)^2 - 3$   |
| <b>15.</b> $y = 2(x + 1)^2 - 3$ | <b>16.</b> $y = -3(x + 1)^2 + 2$ |


In Exercises 17–20, find a quadratic function of the form  $y = ax^2$  that passes through the given point. 17. (2, -8) 18. (-3, 3)


In Exercises 21–30, find the quadratic function y = f(x) that has the given vertex and whose graph passes through the given point. Write the function in standard form.


- **21.** Vertex (0, 0); passing through (-2, 8)
- 22. Vertex (2, 0); passing through (1, 3)
- **23.** Vertex (-3, 0); passing through (-5, -4)
- 24. Vertex (0, 1); passing through (-1, 0)
- 25. Vertex (2, 5); passing through (3, 7)
- 26. Vertex (-3, 4); passing through (0, 0)
- 27. Vertex (2, -3); passing through (-5, 8)
- **28.** Vertex (-3, -2); passing through (0, -8)

**29.** Vertex 
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
; passing through  $\left(\frac{3}{4}, -\frac{1}{4}\right)$   
**30.** Vertex  $\left(-\frac{3}{2}, -\frac{5}{2}\right)$ ; passing through  $\left(1, \frac{55}{8}\right)$ 

In Exercises 31–34, the graph of a quadratic function y = f(x) is given. Find the standard form of the function.







| In Exercises 35–44, graph eac<br>graph of $y = x^2$ and using tr   | h function by starting with the ansformations.                    |  |  |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| <b>35.</b> $f(x) = 3x^2$                                           | <b>36.</b> $f(x) = \frac{1}{3}x^2$                                |  |  |  |  |  |
| 37. $g(x) = (x - 4)^2$                                             | <b>38.</b> $g(x) = (x + 3)^2$                                     |  |  |  |  |  |
| <b>39.</b> $f(x) = -2x^2 - 4$                                      | 40. $f(x) = -x^2 + 3$                                             |  |  |  |  |  |
| <b>41.</b> $g(x) = (x - 3)^2 + 2$                                  | <b>42.</b> $g(x) = (x + 1)^2 - 3$                                 |  |  |  |  |  |
| <b>43.</b> $f(x) = -3(x-2)^2 + 4$                                  | 44. $f(x) = -2(x + 1)^2 + 3$                                      |  |  |  |  |  |
| the standard form $y = a(x - x)$                                   | given function by writing it in $(h)^2 + k$ and then using trans- |  |  |  |  |  |
| and the x- and y-intercepts.                                       | he vertex, the axis of symmetry,                                  |  |  |  |  |  |
| <b>45.</b> $y = x^2 + 4x$                                          | <b>46.</b> $y = x^2 - 2x + 2$                                     |  |  |  |  |  |
| 47. $y = 6x - 10 - x^2$                                            | <b>48.</b> $y = 8 + 3x - x^2$                                     |  |  |  |  |  |
| <b>49.</b> $y = 2x^2 - 8x + 9$                                     | <b>50.</b> $y = 3x^2 + 12x - 7$                                   |  |  |  |  |  |
| <b>51.</b> $y = -3x^2 + 18x - 11$                                  | <b>52.</b> $y = -5x^2 - 20x + 13$                                 |  |  |  |  |  |
|                                                                    | s up or down, (b) find the vertex                                 |  |  |  |  |  |
| $(h,k) = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right),$ | (c) find the axis of symmetry,                                    |  |  |  |  |  |
| (d) find the x- and y-intercept                                    | s, and (e) sketch the graph of                                    |  |  |  |  |  |
| the function.<br>53. $y = x^2 - 8x + 15$                           | <b>54.</b> $y = x^2 + 8x + 13$                                    |  |  |  |  |  |
| 55. $y = x^2 - x - 6$                                              | <b>56.</b> $y = x^2 + x - 2$                                      |  |  |  |  |  |
| <b>57.</b> $y = x^2 - 2x + 4$                                      | <b>58.</b> $y = x^2 - 4x + 5$                                     |  |  |  |  |  |
| <b>59.</b> $y = 6 - 2x - x^2$                                      | <b>60.</b> $y = 2 + 5x - 3x^2$                                    |  |  |  |  |  |
| In Exercises 61–68, a quadrat<br>(a) Determine whether the giv     |                                                                   |  |  |  |  |  |
| maximum value or a minimum                                         | m value. Then find this value.                                    |  |  |  |  |  |
| (b) Find the range of <i>f</i> .<br>61. $f(x) = x^2 - 4x + 3$      | 62. $f(x) = -x^2 + 6x - 8$                                        |  |  |  |  |  |
| 63. $f(x) = -4 + 4x - x^2$                                         | 64. $f(x) = x^2 - 6x + 9$                                         |  |  |  |  |  |
| <b>65.</b> $f(x) = 2x^2 - 8x + 3$                                  | <b>66.</b> $f(x) = 3x^2 + 12x - 5$                                |  |  |  |  |  |
| 67. $f(x) = -4x^2 + 12x + 7$                                       | <b>68.</b> $f(x) = 8x - 5 - 2x^2$                                 |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |
|                                                                    |                                                                   |  |  |  |  |  |

## **SECTION 2.2**

# Exercises

### **Building Skills**

In Exercises 9–14, for each polynomial function, find the degree, the leading term, and the leading coefficient. 9.  $f(x) = 2x^5 - 5x^2$ 10.  $f(x) = 3 - 5x - 7x^4$ 11.  $f(x) = \frac{2x^3 + 7x}{3}$ 12.  $f(x) = -7x + 11 + \sqrt{2}x^3$ 13.  $f(x) = \pi x^4 + 1 - x^2$ 14. f(x) = 5

- In Exercises 35–42, describe the end behavior of the polynomial function *f*. 35.  $f(x) = x - x^3$
- 36.  $f(x) = 2x^3 2x^2 + 1$ 37.  $f(x) = 4x^4 + 2x^3 + 1$ 38.  $f(x) = -x^4 + 3x^3 + x$ 39.  $f(x) = (x + 2)^2(2x - 1)$ 40.  $f(x) = (x - 2)^3(2x + 1)$ 41.  $f(x) = (x + 2)^2(4 - x)$ 42.  $f(x) = (x + 3)^3(2 - x)$

In Exercises 43–50, Find the real zeros of *f* and state the multiplicity for each zero. State whether the graph of *f* crosses or touches the *x*-axis at each zero.

**43.** 
$$f(x) = 3(x - 1)(x + 2)(x - 3)$$
  
**44.**  $f(x) = -5(x + 1)(x + 2)(x - 3)$   
**45.**  $f(x) = (x + 2)^2(2x - 1)$   
**46.**  $f(x) = (x - 2)^3(2x + 1)$   
**47.**  $f(x) = x^2(x^2 - 9)(3x + 2)^3$   
**48.**  $f(x) = -x^3(x^2 - 4)(3x - 2)^2$   
**49.**  $f(x) = (x^2 + 1)(3x - 2)^2$   
**50.**  $f(x) = (x^2 + 1)(x + 1)(x - 2)$ 

In Exercises 63–74, sketch the graph of the polynomial function f using the techniques described in this section. 63. f(x) = 2(x + 1)(x - 2)(x + 4)64. f(x) = -(x - 1)(x + 3)(x - 4)65.  $f(x) = (x - 1)^2(x + 3)(x - 4)$ 66.  $f(x) = -x^2(x + 1)(x - 2)$ 67.  $f(x) = -x^2(x - 3)^2$ 68.  $f(x) = (x - 2)^2(x + 3)^2$ 69.  $f(x) = (x - 1)^2(x + 2)^3(x - 3)$  **SECTION 2.3** 

Exercises

7

### **Building Skills**

In Exercises 9–16, use long division to find the quotient and the remainder.

| 9. $\frac{6x^2 - x - 2}{2x + 1}$                  | 10. $\frac{4x^3 - 2x^2 + x - 3}{2x - 3}$                |
|---------------------------------------------------|---------------------------------------------------------|
| $11. \ \frac{3x^4 - 6x^2 + 3x - 7}{x + 1}$        | 12. $\frac{x^6 + 5x^3 + 7x + 3}{x^2 + 2}$               |
| $13. \ \frac{4x^3 - 4x^2 - 9x + 5}{2x^2 - x - 5}$ | 14. $\frac{y^5 + 3y^4 - 6y^2 + 2y - y^2}{y^2 + 2y - 3}$ |
| $15. \ \frac{z^4 - 2z^2 + 1}{z^2 - 2z + 1}$       |                                                         |
| 16. $\frac{6x^4 + 13x - 11x^3 - 1}{2}$            | $0 - x^2$                                               |

In Exercises 47–50, find the set of possible rational zeros of the given function. 47.  $f(x) = 2x^3 = 4x^2 + 5$ 

**47.** 
$$f(x) = 5x^{2} - 4x^{2} + 5$$
  
**48.**  $g(x) = 2x^{4} - 5x^{2} - 2x + 1$   
**49.**  $h(x) = 4x^{4} - 9x^{2} + x + 6$   
**50.**  $F(x) = 6x^{6} + 5x^{5} + x - 35$ 

 $3x^2 - 5 - x$ 

In Exercises 51–66, find all rational zeros of the given polynomial function.

| 51. | $f(x) = x^3 - x^2 - 4x + 4$        |
|-----|------------------------------------|
| 52. | $f(x) = x^3 + x^2 + 2x + 2$        |
| 53. | $f(x) = x^3 - 4x^2 + x + 6$        |
| 54. | $f(x) = x^3 + 3x^2 + 2x + 6$       |
| 55. | $g(x) = 2x^3 + x^2 - 13x + 6$      |
| 56. | $g(x) = 3x^3 - 2x^2 + 3x - 2$      |
| 57. | $g(x) = 6x^3 + 13x^2 + x - 2$      |
| 58. | $g(x) = 2x^3 + 3x^2 + 4x + 6$      |
| 59. | $h(x) = 3x^3 + 7x^2 + 8x + 2$      |
| 60. | $h(x) = 2x^3 + x^2 + 8x + 4$       |
| 61. | $h(x) = x^4 - x^3 - x^2 - x - x^3$ |

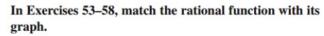
# SECTION 2.4

### **Building Skills**

In Exercises 9-16, find the domain of each rational function.

Exercises

9. 
$$f(x) = \frac{x-3}{x+4}$$
  
10.  $f(x) = \frac{x+1}{x-1}$   
11.  $g(x) = \frac{x-1}{x^2+1}$ 

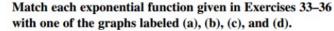

12. 
$$g(x) = \frac{x+2}{x^2+4}$$
  
13.  $h(x) = \frac{x-3}{x^2-x-6}$   
14.  $h(x) = \frac{x-7}{x^2-6x-7}$   
15.  $F(x) = \frac{2x+3}{x^2-6x+8}$   
16.  $F(x) = \frac{3x-2}{x^2-3x+2}$ 

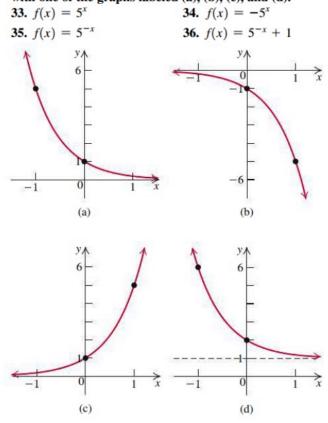
# In Exercises 35–44, find the vertical asymptotes, if any, of the graph of each rational function.

35. 
$$f(x) = \frac{x}{x-1}$$
  
36.  $f(x) = \frac{x+3}{x-2}$   
37.  $g(x) = \frac{(x+1)(2x-2)}{(x-3)(x+4)}$   
38.  $g(x) = \frac{(2x-1)(x+2)}{(2x+3)(3x-4)}$   
39.  $h(x) = \frac{x^2-1}{x^2+x-6}$   
40.  $h(x) = \frac{x^2-4}{3x^2+x-4}$   
41.  $f(x) = \frac{x^2-6x+8}{x^2-x-12}$   
42.  $f(x) = \frac{x^2-9}{x^3-4x}$   
43.  $g(x) = \frac{2x+1}{x^2+x+1}$   
44.  $g(x) = \frac{x^2-36}{x^2+5x+9}$ 

In Exercises 45–52, find the horizontal asymptote, if any, of the graph of each rational function.

| <b>45.</b> $f(x) = \frac{x+1}{x^2+5}$                    | <b>46.</b> $f(x) = \frac{2x-1}{x^2-4}$             |
|----------------------------------------------------------|----------------------------------------------------|
| <b>47.</b> $g(x) = \frac{2x-3}{3x+5}$                    | <b>48.</b> $g(x) = \frac{3x+4}{-4x+5}$             |
| <b>49.</b> $h(x) = \frac{x^2 - 49}{x + 7}$               | <b>50.</b> $h(x) = \frac{x+3}{x^2-9}$              |
| <b>51.</b> $f(x) = \frac{2x^2 - 3x + 7}{3x^3 + 5x + 11}$ | <b>52.</b> $f(x) = \frac{3x^3 + 2}{x^2 + 5x + 11}$ |



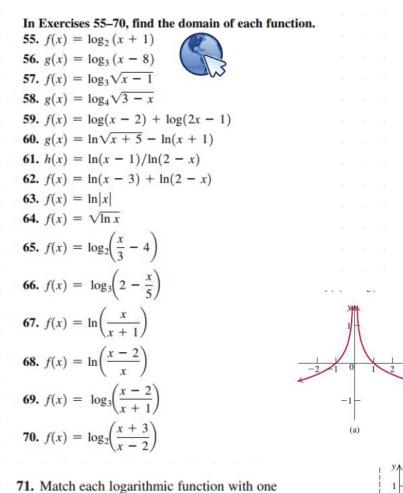

#### SECTION 3.1

Exercises

- In Exercises 23–30, sketch the graph of the given function by making a table of values. (Use a calculator if necessary.)
- **23.**  $f(x) = 4^{x}$  **24.**  $g(x) = 10^{x}$  **25.**  $g(x) = \left(\frac{3}{2}\right)^{-x}$  **26.**  $h(x) = 7^{-x}$  **27.**  $h(x) = \left(\frac{1}{4}\right)^{x}$  **28.**  $f(x) = \left(\frac{1}{10}\right)^{x}$  **29.**  $f(x) = (1.3)^{-x}$ **30.**  $g(x) = (0.7)^{-x}$
- **31.** How are the graphs in Exercises 23 and 27 related? Can we obtain the graph of Exercise 27 from that of Exercise 23? If so, how?
- 32. Repeat Exercise 31 for the graphs in Exercises 24 and 28.



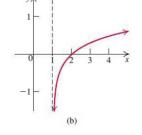


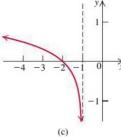

|     |                 |     | es 37<br>te ba  |                  | -    |     |       | -           |      |                |                   |      | tro | ne |     |  |  |  |   |   |  |
|-----|-----------------|-----|-----------------|------------------|------|-----|-------|-------------|------|----------------|-------------------|------|-----|----|-----|--|--|--|---|---|--|
|     | -               |     | s to s          |                  | -    |     |       |             |      |                |                   |      |     |    | he  |  |  |  |   |   |  |
|     |                 | an  | d ra            | nge              | of g | and | d the | hor         | izo  | ntal           | l asy             | mpt  | ote | of | its |  |  |  |   |   |  |
| -   | g(x)            | ) = | $3^{x-1}$       |                  |      |     | 38    | s. g(       | x) : | = 3            | x — 1             | 1    |     |    |     |  |  |  |   |   |  |
| 39. | g(x)            | ) = | 4 <sup>-x</sup> |                  |      |     | 40    | ). g(       | x) : |                | -4 <sup>x</sup>   |      |     |    |     |  |  |  |   |   |  |
| 41. | g(x)            | ) = | -2.5            | 5 <sup>x-1</sup> | + 4  |     | 42    | . g(        | x) : | $=\frac{1}{2}$ | • 5 <sup>1-</sup> | -x _ | 2   |    |     |  |  |  |   |   |  |
| 43  | $q(\mathbf{r})$ | -   | $-e^{x}$        | -2 +             | 3    |     |       |             |      | 2              | + e               |      |     |    |     |  |  |  | • | • |  |
|     | g(x)            |     |                 | 1                | 5    |     |       | g(x) = g(x) | ~    |                |                   |      |     |    |     |  |  |  |   |   |  |
|     | 8(4)            |     |                 |                  |      |     |       |             | -    |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 | •   |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |
|     |                 |     |                 |                  |      |     |       |             |      |                |                   |      |     |    |     |  |  |  |   |   |  |

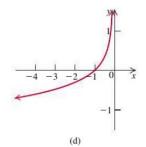
SECTION 3.2

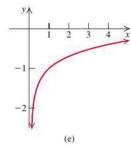
# Exercises

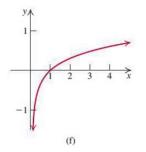
### **Building Skills**


| Building Skills                                          |                                                    |   |   |   |   |        |   |   |   |   |   |   |   |  |
|----------------------------------------------------------|----------------------------------------------------|---|---|---|---|--------|---|---|---|---|---|---|---|--|
| In Exercises 9-20, write each                            | h exponential equation in                          |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>logarithmic form.</b><br><b>9.</b> $5^2 = 25$         | <b>10.</b> $(49)^{-1/2} = \frac{1}{7}$             |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>11.</b> $\left(\frac{1}{16}\right)^{-1/2} = 4$        | <b>12.</b> $(a^2)^2 = a^4$                         |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>13.</b> $10^0 = 1$                                    | <b>14.</b> $10^4 = 10,000$                         | • | • | • | • | •      | • | • | * | • | • | • | • |  |
| <b>15.</b> $(10)^{-1} = 0.1$                             | <b>16.</b> $3^x = 5$                               |   | • | ÷ |   |        | • | • | • | • |   | • | • |  |
| <b>17.</b> $a^2 + 2 = 7$                                 | <b>18.</b> $a^e = \pi$                             |   | • | ÷ | • | •      | ÷ | · | • | • |   | • | • |  |
| <b>19.</b> $2a^3 - 3 = 10$                               | <b>20.</b> $5 \cdot 2^{ct} = 11$                   |   |   |   |   |        |   |   |   |   |   |   |   |  |
| In Exercises 21–32, write each exponential form.         | h logarithmic equation in                          |   | • | • |   | e<br>e | • |   |   | • | • |   | • |  |
| <b>21.</b> $\log_2 32 = 5$                               | <b>22.</b> $\log_7 49 = 2$                         |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>23.</b> $\log_{10} 100 = 2$                           | <b>24.</b> $\log_{10} 10 = 1$                      |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>25.</b> $\log_{10} 1 = 0$                             | <b>26.</b> $\log_a 1 = 0$                          |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>27.</b> $\log_{10} 0.01 = -2$                         | <b>28.</b> $\log_{1/5} 5 = -1$                     |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>29.</b> $3 \log_8 2 = 1$                              | <b>30.</b> $1 + \log 1000 = 4$                     |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>31.</b> $\ln 2 = x$                                   | <b>32.</b> $\ln \pi = a$                           |   |   |   |   |        |   |   |   |   |   |   |   |  |
| In Exercises 33–42, evaluate e<br>calculator.            | each expression without using a                    | 1 |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>33.</b> log <sub>5</sub> 125                          | <b>34.</b> log <sub>9</sub> 81                     |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>35.</b> log 10,000                                    | <b>36.</b> $\log_3 \frac{1}{3}$                    |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>37.</b> $\log_2 \frac{1}{8}$                          | <b>38.</b> $\log_4 \frac{1}{64}$                   |   | • | • | • | •      | • | • | • | • | • | • | • |  |
| <b>39.</b> $\log_3 \sqrt{27}$                            | <b>40.</b> log <sub>27</sub> 3                     |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>41.</b> log <sub>16</sub> 2                           | <b>42.</b> $\log_5 \sqrt{125}$                     |   |   |   |   |        |   |   |   |   |   |   |   |  |
| In Exercises 43–54, evaluate e<br>43. log <sub>3</sub> 1 | each expression.<br>44. $\log_{1/2} 1$             |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>45.</b> log <sub>7</sub> 7                            | <b>46.</b> $\log_{1/9} \frac{1}{2}$                |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>47.</b> $\log_6 6^7$                                  | <b>48.</b> $\log_{1/2} \left(\frac{1}{2}\right)^5$ |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>49.</b> 3 <sup>log<sub>3</sub>5</sup>                 | <b>50.</b> $7^{\log_7 \frac{1}{2}}$                |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>51.</b> $2^{\log_2 7} + \log_5 5^{-3}$                | <b>52.</b> $3^{\log_3 5} - \log_2 2^{-3}$          |   |   |   |   |        |   |   |   |   |   |   |   |  |
| <b>53.</b> $4^{\log_4 6} - \log_4 4^{-2}$                | 54. $10^{\log x} - e^{\ln y}$                      |   |   |   |   |        |   |   |   |   |   |   |   |  |
|                                                          |                                                    |   |   |   |   |        |   |   |   |   |   |   |   |  |





labeled **a–f**. **a.**  $f(x) = \log x$ 


**b.**  $f(x) = -\log|x|$  **c.**  $f(x) = -\log(-x)$  **d.**  $f(x) = \log(x - 1)$ **e.**  $f(x) = (\log x) - 1$ 


**f.**  $f(x) = \log(-1 - x)$ 











| isy |      |      | of t              |                  |      | -    | e or  | the        | unc        | 101          | and                | a cine           | e ver | arca | • |   |   |   |   |   |   |   |   |  |
|-----|------|------|-------------------|------------------|------|------|-------|------------|------------|--------------|--------------------|------------------|-------|------|---|---|---|---|---|---|---|---|---|--|
|     |      |      | log <sub>2</sub>  |                  |      |      |       | 82.        | <i>y</i> = | lo           | g <sub>2</sub> (-  | -x)              |       | 1    | E |   |   |   |   |   |   |   |   |  |
| 83  | . y  | =    | log <sub>2</sub>  | (3 -             | x)   |      |       | 84.        | <i>y</i> = | log          | $g_2 x$            |                  |       | (    |   |   |   |   |   |   |   |   |   |  |
| 85  | . y  | =    | 2 +               | log <sub>2</sub> | (3 - | - x) |       | 86.        | <i>y</i> = | 4            | - 10               | g2 (3            | 3     | x)   | ) |   |   |   |   |   |   |   |   |  |
| 87  | . y  | =    | log <sub>2</sub>  | x                |      |      |       | 88.        | <i>y</i> = | log          | $g_2 x^2$          |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      | alua | te ea | ach e      |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      | (log <sub>3</sub> | 81)              |      |      |       |            |            | -            | og <sub>3</sub> (1 | log <sub>2</sub> | 8)]   | (    | E |   |   |   |   |   |   |   |   |  |
|     | . lo |      |                   |                  |      |      |       | 92.        |            |              |                    |                  |       | ,    | J |   |   |   |   |   |   |   |   |  |
| 93  | . lo | g√   | $\frac{1}{2}4$    |                  |      |      |       | 94.        | log        | √ <u>3</u> 2 | 7                  |                  |       |      |   |   |   |   |   |   |   |   |   |  |
| n l | Exe  | rcis | es 9              | 5-10             | 0, b | egin | wit   | h the      | e gra      | aph          | of y               | =                | ln x  | and  |   |   |   |   |   |   |   |   |   |  |
| ise | tra  | nsf  |                   |                  | -    | -    |       |            | -          | -            |                    |                  | the   |      |   |   |   |   |   |   |   |   |   |  |
| -   | ctio |      | ln (x             | · + ^            | 2)   |      |       | 96.        |            | 10           | (2                 |                  |       |      | 1 |   |   |   |   |   |   |   |   |  |
|     | -    |      | ln                |                  | -    |      |       | 90.<br>98. | -          |              |                    | - x)             |       | (    | 1 | • | ÷ | • | • | ÷ | • | · | • |  |
|     | -    |      | -m<br>3 -         |                  |      |      |       |            | -          |              |                    | (1               | -x    |      |   |   |   |   |   |   |   |   |   |  |
| 33  | • y  | _    | 5 -               | 2 111            | л    |      |       | 100.       | <i>y</i> – | . 1          | - 111              | (1               | - x)  |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   | • |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  | •     |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |
|     |      |      |                   |                  |      |      |       |            |            |              |                    |                  |       |      |   |   |   |   |   |   |   |   |   |  |

#### SECTION 3.4

# Exercises

### ....

| Building Skills                                        |                                                 |   |   |   |   |   |   |   |   |   |
|--------------------------------------------------------|-------------------------------------------------|---|---|---|---|---|---|---|---|---|
| In Exercises 9-24, solve each                          | equation.                                       |   |   |   |   |   |   |   |   |   |
| 9. $2^x = 16$                                          | <b>10.</b> $3^x = 243$                          |   |   |   |   |   |   |   |   |   |
| <b>11.</b> $8^x = 32$                                  | <b>12.</b> $5^{x-1} = 1$                        |   |   |   |   |   |   |   |   |   |
| <b>13.</b> $4^{ x } = 128$                             | <b>14.</b> $9^{ x } = 243$                      |   |   |   |   |   |   |   |   |   |
| <b>15.</b> $5^{- x } = 625$                            | <b>16.</b> $3^{- x } = 81$                      |   |   |   |   |   |   |   |   |   |
| <b>17.</b> $\ln x = 0$                                 | <b>18.</b> $\ln(x-1) = 1$                       |   |   |   |   |   |   |   |   |   |
| <b>19.</b> $\log_2 x = -1$                             | <b>20.</b> $\log_2(x+1) = 3$                    |   |   |   |   |   |   |   |   |   |
| <b>21.</b> $\log_3  x  = 2$                            | <b>22.</b> $\log_2  x+1  = 3$                   |   |   |   |   |   |   |   |   |   |
| <b>23.</b> $\frac{1}{2}\log x - 2 = 0$                 | <b>24.</b> $\frac{1}{3}\log(x+1) - 1 = 0$       | • | • | • | • | 0 | 0 | 0 | • | • |
|                                                        | h exponential equation. Write the               |   |   |   |   |   |   |   |   |   |
|                                                        | garithms and then approximate                   |   |   |   |   |   |   |   |   |   |
| the result correct to three dee<br>25. $2^x = 3$       | cimal places.<br>26. $3^x = 5$                  |   |   |   |   |   |   |   |   |   |
| <b>23.</b> $2^{2x+3} = 15$                             | <b>28.</b> $3^{2x+5} = 17$                      |   |   |   |   |   |   |   |   |   |
| <b>29.</b> $e^{x+1} = 3$                               | <b>30.</b> $e^{2x-1} = 5$                       |   |   |   |   |   |   |   |   |   |
| <b>31.</b> $5 \cdot 2^x - 7 = 10$                      | <b>32.</b> $3 \cdot 5^x + 4 = 11$               |   |   |   |   |   |   |   |   |   |
| <b>33.</b> $3 \cdot 4^{2x-1} + 4 = 14$                 | <b>34.</b> $2 \cdot 3^{4x-5} - 7 = 10$          |   |   |   |   |   |   |   |   |   |
| <b>35.</b> $2e^{x-2} + 3 = 7$                          |                                                 |   |   |   |   |   |   |   |   |   |
| <b>36.</b> $3e^{3x-5} + 1 = 6$                         |                                                 |   |   |   |   |   |   |   |   |   |
| <b>37.</b> $5^{1-x} = 2^x$                             | <b>38.</b> $3^{2x-1} = 2^{x+1}$                 |   |   |   |   |   |   |   |   |   |
| <b>39.</b> $2^{1-x} = 3^{4x+6}$                        | <b>40.</b> $5^{2x+1} = 3^{x-1}$                 | · | • | • |   |   |   |   |   | • |
| <b>41.</b> $2 \cdot 3^{x-1} = 5^{x+1}$                 | <b>42.</b> $5 \cdot 2^{2x+1} = 7 \cdot 3^{x-1}$ |   |   |   |   |   |   |   |   |   |
| <b>43.</b> $(1.065)^t = 2$                             | <b>44.</b> $(1.0725)^t = 2$                     |   |   |   |   |   |   |   |   |   |
| <b>45.</b> $2^{2x} - 4 \cdot 2^x = 21$                 | <b>46.</b> $4^x - 4^{-x} = 2$                   |   |   |   |   |   |   |   |   |   |
| <b>47.</b> $9^x - 6 \cdot 3^x + 8 = 0$                 |                                                 |   |   |   |   |   |   |   |   |   |
| 48. $\frac{3^x + 5 \cdot 3^{-x}}{3} = 2$               |                                                 |   |   |   |   |   |   |   |   |   |
| 5                                                      |                                                 |   |   |   |   |   |   |   |   |   |
| <b>49.</b> $3^{3x} - 4 \cdot 3^{2x} + 2 \cdot 3^x = 8$ |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |
|                                                        |                                                 |   |   |   |   |   |   |   |   |   |

| In Exercises 61–78, solve each logarithmic equation.<br>$(1, 2 + \log (2\pi + 5)) = 2$ |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $61. 3 + \log (2x + 5) = 2$                                                            |  |  |  |  |  |  |
| <b>62.</b> $1 + \log(3x - 4) = 0$                                                      |  |  |  |  |  |  |
| <b>63.</b> $\log (x^2 - x - 5) = 0$                                                    |  |  |  |  |  |  |
| <b>64.</b> $\log (x^2 - 6x + 9) = 0$                                                   |  |  |  |  |  |  |
| <b>65.</b> $\log_4(x^2 - 7x + 14) = 1$                                                 |  |  |  |  |  |  |
| <b>66.</b> $\log_4(x^2 + 5x + 10) = 1$                                                 |  |  |  |  |  |  |
| <b>67.</b> $\ln(2x-3) - \ln(x+5) = 0$                                                  |  |  |  |  |  |  |
| <b>68.</b> $\log(x+8) + \log(x-1) = 1$                                                 |  |  |  |  |  |  |
| <b>69.</b> $\log x + \log (x + 9) = 1$                                                 |  |  |  |  |  |  |
| <b>70.</b> $\log_5(3x-1) - \log_5(2x+7) = 0$                                           |  |  |  |  |  |  |
| <b>71.</b> $\log_a(5x-2) - \log_a(3x+4) = 0$                                           |  |  |  |  |  |  |
| 72. $\log(x-1) + \log(x+2) = 1$                                                        |  |  |  |  |  |  |
| <b>73.</b> $\log_6(x+2) + \log_6(x-3) = 1$                                             |  |  |  |  |  |  |
| <b>74.</b> $\log_2(3x-2) - \log_2(5x+1) = 3$                                           |  |  |  |  |  |  |
| <b>75.</b> $\log_3(2x - 7) - \log_3(4x - 1) = 2$                                       |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
| <b>76.</b> $\log_4 \sqrt{x+3} - \log_4 \sqrt{2x-1} = \frac{1}{4}$                      |  |  |  |  |  |  |
| 77. $\log_7 3x + \log_7 (2x - 1) = \log_7 (16x - 10)$                                  |  |  |  |  |  |  |
| <b>78.</b> $\log_3(x+1) + \log_3(2x) = \log_3(3x+1)$                                   |  |  |  |  |  |  |
| 101 1053 (*** 1) * 1053 21 1053 (*** 1)                                                |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |
|                                                                                        |  |  |  |  |  |  |