UNIT 4 - Trigonometric formulas and equations

5.1 trigonometric identities; pythagorus, even/odd trig functions

- 5.2 sum and difference formula for trig functions
- 5.3 double angle formula, half angle formula
- 5.4 sum-to-product and product-to-sum formulas
- 5.5 solving trigonometric equations

SECTION 5.1

Exercises

Building Skills

In Exercises 9–18, use the fundamental identities and appropriate algebraic operations to simplify each expression. 9. $(1 + \tan x)(1 - \tan x) + \sec^2 x$		39.	1 -	1 - sin.	$\frac{1}{x}$ +	1 -	1 + si	n <i>x</i>	= 2	sec	x^2x		
$310. (\sec x - 1)(\sec x + 1) - \tan^2 x$				1			1						
11. $(\sec x + \tan x)(\sec x - \tan x)$		40.	1	1	-+	1	1		=	2 cs	$c^2 x$		
12. $\frac{\sec^2 x - 4}{\sec x - 2}$			•	005	~	•		001					
13. $\csc^4 x - \cot^4 x$		41	S	inx		5	sin x				2		
$14. \sin x \cos x (\tan x + \cot x)$		41.	1 -	$-\sin x$	x	1 -	+ si	nx	= 2	tan	- <i>x</i>		
15. $\frac{\sec x \csc x(\sin x + \cos x)}{\sec x + \csc x}$													
$\sec x + \csc x$		12	0	$\cos x$			cos.	x	_	2 00	2 -		
16. $\frac{1}{\csc x + 1} - \frac{1}{\csc x - 1}$		42.	1 -	$-\cos x$	x	1	+ c	os x	_	200	n A		
$\tan^2 x = 2 \tan x = 3$				1				1				2	
17. $\frac{\tan^2 x - 2 \tan x - 3}{\tan x + 1}$		43.		$\frac{1}{x-}$		+ -		1		-		4	
$\tan^2 x + \sec x - 1$			sec	x -	tana		sec	x +	tar	1.x	C	osx	
$18. \frac{\tan^2 x + \sec x - 1}{\sec x - 1}$													
		11	12	$\frac{1}{x+}$		1	-		1	_		2	10
In Francisco 10, 24 minute di et di a since constitue in est an		44.	CSC	r +	cot	r	csc	r -	- co	ot r		sin r	
In Exercises 19–24, prove that the given equation is not an identity by finding a value of x for which the two sides have													
different values. The answers may vary.		45.	(si	1x +	cos	$(x)^2$	=	1 +	2 s	in x	cos:	x	
19. $\sin x = 1 - \cos x$						1							
$3 20. \tan x = \sec x - 1$				1x -		1						x	
21. $\cos x = \sqrt{1 - \sin^2 x}$		47.	(1	+ tar	$(x)^2$	=	sec ²	x +	- 21	anx			
22. $\sec x = \sqrt{1 + \tan^2 x}$		48	(1	- co	$(r)^2$	=	csc	r -	- 2	cot	r		
23. $\sin^2 x = (1 - \cos x)^2$											~		
24. $\cot^2 x = (\csc x + 1)^2$		49.	sec	$x^{2} + x^{2}$	csc	$x^{2} = x^{2}$	= se	$e^2 x$	csc	$x^2 x$			
In Exercises 25-68, verify each identity.		50	cot	$x^{2} + x^{2}$	tan	r -	- 00	2 r	cec	2	- 2		
$25. \sin x \tan x + \cos x = \sec x$		50.	cot	A	tan	л -	- 50	c ,	USU	л	4		
$26. \cos x \cot x + \sin x = \csc x$													
$27. \ \frac{1-4\cos^2 x}{1-2\cos x} = 1+2\cos x$													
$9 - 16 \sin^2 x$													
28. $\frac{1}{2} = 3 - 4 \sin x$													
$28. \frac{9 - 16\sin^2 x}{3 + 4\sin x} = 3 - 4\sin x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$ 38. $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$ 38. $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$ 38. $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$ 38. $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$													
29. $(\cos x - \sin x)(\cos x + \sin x) = 1 - 2\sin^2 x$ 30. $(\sin x - \cos x)(\sin x + \cos x) = 1 - 2\cos^2 x$ 31. $\sin^2 x \cot^2 x + \sin^2 x = 1$ 32. $\cos^2 x \tan^2 x + \cos^2 x = 1$ 33. $\tan^2 x - \sin^2 x = \sin^4 x \sec^2 x$ 34. $\cot^2 x - \cos^2 x = \cos^4 x \csc^2 x$ 35. $\sin^3 x - \cos^3 x = (\sin x - \cos x)(1 + \sin x \cos x)$ 36. $\sin^3 x + \cos^3 x = (\sin x + \cos x)(1 - \sin x \cos x)$ 37. $\cos^4 x - \sin^4 x = 1 - 2\sin^2 x$ 38. $\cos^4 x - \sin^4 x = 2\cos^2 x - 1$													

SECTION 5.2 Exercises

Building Skills									
In Exercises 9–28, find the exa									
9. $\sin(45^\circ + 30^\circ)$	10. $\sin(45^\circ - 30^\circ)$								
11. $\sin(60^\circ - 45^\circ)$	12. $\sin(60^\circ + 45^\circ)$								
13. $\sin(-105^{\circ})$	14. cos 285°								
15. tan 225°	16. $tan(-165^{\circ})$								
17. $\sin\left(\frac{\pi}{6}+\frac{\pi}{4}\right)$	$18.\cos\!\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$								
19. $\tan\left(\frac{\pi}{4}-\frac{\pi}{6}\right)$	20. $\cot\left(\frac{\pi}{3}-\frac{\pi}{4}\right)$								
21. $\operatorname{sec}\left(\frac{\pi}{3} + \frac{\pi}{4}\right)$	$22. \csc\left(\frac{\pi}{4} - \frac{\pi}{3}\right)$								
-5π	7π								
23. $\cos \frac{-5\pi}{12}$	24. $\sin \frac{7\pi}{12}$								
25. $\tan \frac{19\pi}{12}$	26. $\sec \frac{\pi}{12}$	1							
12	12								
27. $\tan \frac{17\pi}{12}$	28. $\csc \frac{11\pi}{12}$								
In Exercises 29-42, verify eac	ch identity.								
$29.\sin\!\left(x+\frac{\pi}{2}\right)=\cos x$	$30.\cos\!\left(x+\frac{\pi}{2}\right)=-\sin x$								
31. $\sin\left(x - \frac{\pi}{2}\right) = -\cos x$	32. $\cos\left(x - \frac{\pi}{2}\right) = \sin x$								
(π)	(π)								
$33. \tan\left(x + \frac{\pi}{2}\right) = -\cot x$	34. $\tan\left(x - \frac{\pi}{2}\right) = -\cot x$								
35. $\csc(x + \pi) = -\csc x$	36. $\sec(x + \pi) = -\sec x$								
$37.\cos\!\left(x+\frac{3\pi}{2}\right)=\sin x$	$38.\cos\!\left(x-\frac{3\pi}{2}\right)=-\sin x$	x							
39. $\tan\left(x-\frac{3\pi}{2}\right)=-\cot x$	40. $\tan\left(x+\frac{3\pi}{2}\right)=-\cot x$								
$(x - \frac{1}{2}) = -\cot x$	40. $\tan(x + \frac{1}{2}) = -\cot x$								
41. $\cot(3\pi - x) = -\cot x$	42. $\csc\left(\frac{5\pi}{2} - x\right) = \sec x$								
	(2 x) see (2	1							

In Exercises 43–52, find the exact value of each expression without using a calculator. 43. $\sin 56^{\circ} \cos 34^{\circ} + \cos 56^{\circ} \sin 34^{\circ}$ 44. $\cos 57^{\circ} \cos 33^{\circ} - \sin 57^{\circ} \sin 33^{\circ}$ 45. $\cos 331^\circ \cos 61^\circ + \sin 331^\circ \sin 61^\circ$ 46. $\cos 110^{\circ} \sin 70^{\circ} + \sin 110^{\circ} \cos 70^{\circ}$ 47. $\frac{\tan 129^\circ - \tan 84^\circ}{1 + \tan 129^\circ \tan 84^\circ}$ 48. $\frac{\tan 28^\circ + \tan 17^\circ}{1 - \tan 28^\circ \tan 17^\circ}$ **49.** $\sin \frac{7\pi}{12} \cos \frac{3\pi}{12} - \cos \frac{7\pi}{12} \sin \frac{3\pi}{12}$ 50. $\cos \frac{5\pi}{12} \cos \frac{\pi}{12} - \sin \frac{5\pi}{12} \sin \frac{\pi}{12}$ $\tan\frac{5\pi}{12} - \tan\frac{2\pi}{12}$ 52. $\frac{\tan\frac{5\pi}{12} + \tan\frac{7\pi}{12}}{1 - \tan\frac{5\pi}{12}\tan\frac{7\pi}{12}}$ 51. $\frac{12}{1 + \tan \frac{5\pi}{12} \tan \frac{2\pi}{12}}$ In Exercises 53-58, find the exact value of each expression, given that $\tan u = \frac{3}{4}$, with u in quadrant III, and $\sin v = \frac{5}{13}$, with v in quadrant II. 53. $\sin(u - v)$ 54. $\sin(u + v)$ 56. $\cos(u - v)$ 55. $\cos(u + v)$ 57. tan(u + v)58. tan(u - v)In Exercises 59-64, find the exact value of each expression, given that $\cos \alpha = -\frac{2}{5}$, with α in quadrant II, and $\sin \beta = -\frac{3}{7}$, with β in quadrant IV. 59. $\sin(\alpha - \beta)$ 60. $\cos(\alpha - \beta)$ 61. $\csc(\alpha + \beta)$ 62. sec $(\alpha + \beta)$ 63. $\cot(\alpha - \beta)$ 64. $\cot(\alpha + \beta)$

SECTION 5.3

Exercises

Building Skills

In Exercises 9–14, use the given information about the angle θ to find the exact value of a. $\sin 2\theta$ b. $\cos 2\theta$ c. $\tan 2\theta$

9. $\sin \theta = \frac{3}{5}, \theta$ in quadrant II

10.
$$\cos \theta = -\frac{5}{13}$$
, θ in quadrant III

11.
$$\tan \theta = 4$$
, $\sin \theta < 0$

12.
$$\sec\theta = -\sqrt{3}, \sin\theta > 0$$

13.
$$\tan \theta = -2, \frac{\pi}{2} < \theta < \pi$$

14.
$$\cot \theta = -7, \frac{3\pi}{2} < \theta < 2\pi$$

In Exercises 15–24, use a double-angle formula to find the exact value of each expression.

15. $1 - 2 \sin^2 75^\circ$ **16.** $\frac{2 \tan 75^\circ}{1 - \tan^2 75^\circ}$ **17.** $2 \cos^2 105^\circ - 1$ **18.** $1 - 2 \sin^2 165^\circ$ **19.** $\frac{2 \tan 165^\circ}{1 - \tan^2 165^\circ}$ **20.** $2 \cos^2 165^\circ - 1$ **21.** $1 - 2 \sin^2 \frac{\pi}{8}$ **22.** $2 \cos^2 \left(-\frac{\pi}{8}\right) - 1$ **23.** $\frac{2 \tan \left(-\frac{5\pi}{12}\right)}{1 - \tan^2 \left(-\frac{5\pi}{12}\right)}$ **24.** $1 - 2 \sin^2 \left(-\frac{7\pi}{12}\right)$

In Exercises 25 and 26, verify each "quadruple-angle" formula. 25. $\sin 4\theta = \cos \theta (4 \sin \theta - 8 \sin^3 \theta)$ 26. $\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$

In Exercises 27–40, verify each identity. 27. $\cos^4 x - \sin^4 x = \cos 2x$ 28. $1 + \cos 2x + 2 \sin^2 x = 2$ 29. $(\sin x - \cos x)^2 = 1 - \sin 2x$ 30. $(\sin x + \cos x)^2 = 1 + \sin 2x$ 31. $\sin 4x = 4 \sin x \cos x \cos 2x$ 32. $\sin 4x = 8 \sin x \cos^3 x - 4 \sin x \cos x$ 33. $\frac{\sin 3x}{\sin x} - \frac{\cos 3x}{\cos x} = 2$ 34. $\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 2 \cot 2x$ 35. $\frac{1 - \cos 2x}{\sin 2x} = \tan x$ 36. $\frac{1 + \cos 2x}{\sin 2x} = \cot x$ 37. $\sin 2x = \frac{2 \tan x}{1 + \tan^2 x}$ 38. $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$ 39. $\frac{1 + \sin 2x}{\cos 2x} = \frac{\cos x + \sin x}{\cos x - \sin x}$ 40. $\cot x - \tan x = 2 \cot 2x$

In Exercises 41–50, use the power-reducing formulas to rewrite each expression that does not contain trigonometric functions of power greater than 1.

41.
$$4 \sin^2 x \cos^2 x$$

42. $\sin^2 x \cos^2 x$
43. $4 \sin x \cos x(1 - 2 \sin^2 x)$
44. $4 \sin x \cos x(2 \cos^2 x - 1)$
45. $2 \sin 3x \cos 3x(2 \cos^2 3x - 1)$
46. $\sin 8x(1 - 2 \sin^2 4x)$
47. $\sin \frac{x}{2} \cos \frac{x}{2} \left(1 - 2 \sin^2 \frac{x}{2}\right)$
48. $\sin x \left(2 \cos^2 \frac{x}{2} - 1\right)$
49. $8 \sin^4 \frac{x}{2}$
50. $8 \cos^4 \frac{x}{2}$

In Exercises 51–62, use half-angle formulas to find the exact value of each expression.

51. $\sin \frac{\pi}{12}$ 52. $\sin \frac{\pi}{8}$ 53. $\cos \frac{\pi}{8}$ 54. $\tan \frac{\pi}{8}$ 55. $\sin \left(-\frac{3\pi}{8}\right)$ 56. $\cos \left(-\frac{3\pi}{8}\right)$ 57. $\tan \left(\frac{7\pi}{8}\right)$ 58. $\sec \left(-\frac{7\pi}{8}\right)$ 59. $\tan 112.5^{\circ}$ 60. $\cos 112.5^{\circ}$ 61. $\sin (-75^{\circ})$ 62. $\tan (-105^{\circ})$

SECTION 5.4

Exercises

Building Skills

In Exercises 9–24, use the product-to-sum formulas to rewrite each expression as the sum or difference of two functions. Simplify where possible.

9. $\sin x \cos x$	10. $\cos x \cos x$
11. $\sin x \sin x$	12. $\cos x \sin x$
13. sin 25° cos 5°	14. sin 40° sin 20°
15. cos 140° cos 20°	16. cos 70° sin 20°
17. $\sin \frac{7\pi}{12} \sin \frac{\pi}{12}$	$18.\sin\frac{3\pi}{8}\cos\frac{\pi}{8}$
19. $\cos \frac{5\pi}{8} \sin \frac{\pi}{8}$	20. $\cos \frac{5\pi}{3} \cos \frac{\pi}{3}$
21. $\sin 5\theta \cos \theta$	22. $\cos 3\theta \sin 2\theta$
23. $\cos 4x \cos 3x$	24. $\sin 5x \sin 2x$
In Exercises 25-32, find th	ne exact value of each expression.
25. sin 37.5° sin 7.5°	26. cos 52.5° cos 7.5°
27. sin 67.5° cos 22.5°	28. cos 105° sin 75°
29. $\sin \frac{5\pi}{24} \cos \frac{\pi}{24}$	30. $\sin \frac{7\pi}{12} \sin \frac{\pi}{12}$
31. $\cos \frac{13\pi}{24} \cos \frac{5\pi}{24}$	32. $\cos\frac{7\pi}{24}\sin\frac{\pi}{24}$
In Exampleon 22 52 man an	m to much at formulas to normite

In Exercises 33–52, use sum-to-product formulas to rewrite each expression as a product. Simplify where possible. 33. cos 40° - cos 20°

34.	sin 2	22° +	sin	8°	
35.	sin 3	32° -	- sin	16°	
36.	cos	47° -	- cos	13°	
37.	sin	$\frac{\pi}{5} +$	$sin\frac{2}{3}$	$\frac{\pi}{5}$	
38.	cos	$\frac{\pi}{12}$ +	cos	$\frac{\pi}{3}$	

39. $\cos\frac{1}{2} + \cos\frac{1}{3}$
40. $\sin \frac{2}{3} - \sin \frac{1}{4}$
41. $\cos 3x + \cos 5x$
42. $\sin 5x - \sin 3x$
43. $\sin 7x + \sin(-x)$
44. $\cos 7x - \cos 3x$
45. $\sin x + \cos x$
46. $\cos x - \sin x$
47. $\sin 2x - \cos 2x$
48. $\cos 3x + \sin 3x$
49. $\sin 3x + \cos 5x$
50. $\sin 5x - \cos x$
51. $a(\sin x + \cos x)$
52. $a(\sin bx + \cos bx)$

			es 53				ach i	dent	ity.											
53	si	nx +	sin:	$\frac{3x}{2}$	= tar	12x														
54	- co	s 2x	$+ \sin$	$\frac{14x}{s4x}$	= ta	an 3x	5													
-	co	s 3x	- co	s7 <i>x</i>		2														
			- co + sir																	
6	co si	s 12x	- c - sir	os 4	$\frac{x}{x} =$	tan 8	3x													
7	co	s 2x	+ co - co	s2y	= c	ot (y	- x) cot	t(y -	+x)										
R	sir	12x	+ sin	2y	_ ta	n (x	+ y													
				-																
			sin 2								1									
			cos + sin						20											
			cos									2xc	os4r							

Exercises

Building Skills

In Exercises 9–18, find a	Il solutions of each equation. Express
the solutions in radians.	
0 and $\mathbf{r} = 0$	10 $\sin x = 0$

SECTION 5.5

9. $\cos x = 0$	10. $\sin x = 0$
11. $\tan x = -1$	12. $\cot x = -1$
13. $\cos x = \frac{\sqrt{2}}{2}$	14. $\sin x = \frac{\sqrt{3}}{2}$
15. $\cot x = \sqrt{3}$	16. $\tan x = -\frac{\sqrt{3}}{3}$
17. $\cos x = -\frac{1}{2}$	18. $\sin x = -\frac{\sqrt{3}}{2}$
In Energian 10 28 find	all ashtisms of each constian

In Exercises 19–28, find all solutions of each equation. Express the solutions in degrees. $\sqrt{3}$

19. $\tan x = \frac{\sqrt{3}}{3}$	20. $\cot x = 1$
21. $\sin x = -\frac{1}{2}$	22. $\cos x = \frac{1}{2}$
23. $\csc x = 1$	24. sec $x = -1$
25. $\sqrt{3} \csc x - 2 = 0$	26. $\sqrt{3} \sec x + 2 = 0$
27. $2 \sec x - 4 = 0$	28. $2 \csc x + 4 = 0$

In Exercises 35–40, find all solutions of each equation in the interval $[0, 2\pi)$. Round the solutions to four decimal places. 35. $\csc x = -2$ 36. $3 \sin x - 1 = 0$ 37. $3 \tan x + 4 = 0$ 38. $2 \sec x - 7 = 0$

39.
$$2 \csc x + 5 = 0$$
 40. $\cos x = 0.1106$

In Exercises 41–48, find all solutions of each equation in the interval $[0, 2\pi)$.

41. $\sin\left(x + \frac{\pi}{4}\right) = \frac{1}{2}$ 42. $2\cos\left(x - \frac{\pi}{4}\right) + 1 = 0$ 43. $\sec\left(x - \frac{\pi}{8}\right) + 2 = 0$ 44. $\csc\left(x + \frac{\pi}{8}\right) - 2 = 0$ 45. $\sqrt{3}\tan\left(x - \frac{\pi}{6}\right) - 1 = 0$ 46. $\cot\left(x + \frac{\pi}{6}\right) + 1 = 0$ 47. $2\sin\left(x - \frac{\pi}{3}\right) + 1 = 0$ 48. $2\cos\left(x + \frac{\pi}{3}\right) + \sqrt{2} = 0$

In Exercises 49-68, find all solu	utions of each equation in the								
interval $[0, 2\pi)$.									
49. $\cos 2x = \frac{\sqrt{3}}{2}$									
50. $\sin 2x = \frac{\sqrt{3}}{2}$									
2									
51. $\sin 2x = -\frac{1}{2}$									
52. $\cos 2x = -\frac{1}{2}$									
2	$\sqrt{3}$								
53. sec $2x = \frac{1}{2}$	54. $\csc 2x = \frac{\sqrt{3}}{2}$								
55. $\tan 2x = \frac{\sqrt{3}}{3}$									
56. $\cot 2x = \frac{\sqrt{3}}{3}$									
57. $\sin\left(2x - \frac{\pi}{3}\right) = \frac{1}{2}$									
58. $\cos\left(2x + \frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2}$									
59. $\sin 3x = \frac{1}{2}$									
60. $\cos 3x = -\frac{1}{2}$									
-									
61. $\cos 3x = \frac{1}{2}$									
62. $\sin 3x = -\frac{\sqrt{3}}{2}$									
22									
63. $\cos \frac{x}{2} = \frac{1}{2}$	64. $\csc \frac{x}{2} = 2$								
65. $\sin \frac{x}{2} = -\frac{\sqrt{3}}{2}$	66. $\sec \frac{x}{2} = -\frac{2\sqrt{3}}{3}$								
65. $\sin \frac{1}{2} = -\frac{1}{2}$	66. $\sec \frac{1}{2} = -\frac{1}{3}$								
67. $\tan \frac{x}{3} = 1$	68. $\cot \frac{x}{3} = \sqrt{3}$								
In Exercises 69–78, find all se	olutions of each equation in the								
interval $[0, 2\pi)$.	success of each equation in the								
$69. \ \sin 2x = \sin x$									
70. $\cos 2x = \cos x$									
71. $\sin 2x = \cos x$									
72. $\cos 2x = \sin x$									
$73. \ \cos\left(2x + \frac{\pi}{4}\right) = \cos x$									
74. $\sin\left(2x-\frac{\pi}{4}\right)=\sin x$									
$75. \ \sin 2x = \cos\left(x - \frac{\pi}{4}\right)$									
			-	-	-	-	-	-	-

76.	$\cos\left(2x - \frac{\pi}{4}\right) = \sin x$										
	(.,	\ \									
77.	$\sin\left(2x - \frac{\pi}{4}\right) = \cos\left(x + \frac{\pi}{4}\right)$	$\left(\frac{\pi}{4}\right)$									
	(π)	π									
78.	$\cos\left(2x + \frac{\pi}{4}\right) = \sin\left(x - \frac{\pi}{4}\right)$	$\overline{4}$)									
		tions of each equation in the									
	rval $[0, 2\pi)$. $(\sin x + 1)(\tan x - 1) = 0$)									
80.	$(2\cos x + 1)(\sqrt{3}\tan x - 1) = 0$	(1) = 0									
81.	$(\csc x - 2)(\cot x + 1) = 0$)									
	$(\sqrt{3} \sec x - 2)(\sqrt{3} \cot x - 2)$										
	$(\tan x + 1)(2\sin x - 1) =$										
	$(2\sin x - \sqrt{3})(2\cos x - 1)$										
	$(\sqrt{2} \sec x - 2)(2 \sin x + 1)$										
86.	$(\cot x - 1)(\sqrt{2}\csc x + 2)$	= 0									
		utions of each equation in the									
inter	$[0, 2\pi).$	aa 4 2 4									
	$4\sin^2 x = 1$	88. $4\cos^2 x = 1$									
	$\tan^2 x = 1$	90. $\sec^2 x = 2$									
	$3\csc^2 x = 4$	92. $3 \cot^2 x = 1$									
	$3\sin^2 x = \cos^2 x$ $\cos^2 x - \sin^2 x = 1$	94. $3\cos^2 x = \sin^2 x$									
	$\cos^2 x - \sin^2 x = 1$ $2\sin^2 x + \cos x - 1 = 0$										
	$2 \sin^2 x + \cos x - 1 = 0$ $2 \cos^2 x - 3 \sin x - 3 = 0$										
	$2\cos x - 3\sin x - 3 = 0$ $2\sin^2 x - \cos x - 1 = 0$										
	$2 \sin^2 \theta - \sin \theta - 1 = 0$		•	•	•	•	•	•	•	•	
	$2 \sin \theta - \sin \theta - 1 = 0$ $2 \cos^2 \theta - 5 \cos \theta + 2 = 0$										
	$\sqrt{3} \sec^2 x - 2 \tan x - 2\sqrt{3}$										
	$\csc^2 x - (\sqrt{3} + 1)\cot x +$										
102.		$(\sqrt{5} 1) = 0$									
In	Exercises 103-108, solve	e each trigonometric equation	in								
	e interval $[0, 2\pi)$ by squ										
103	3. $\sqrt{3}\sin x = 1 + \cos x$										
104	4. $1 + \sin x = \sqrt{3} \cos x$	c .									
105	5. $\tan x + 1 = \sec x$										
100	6. $\sqrt{3} \tan \theta + 1 = \sqrt{3} \mathrm{s}$	$ec \theta$									
107	7. $\sqrt{3}\cot\theta + 1 = \sqrt{3}\phi$	$\csc \theta$									
	8. $\sin x + \cos x = \sqrt{1}$										