Math 1501 Calculus 1 Fall ’13

Practice Exam 2

1. Find % if y = cos®(z).
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2. Use the properties of natural log to simplify first, then find 4/ where y = In (_x_) ;
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4. Write the sum in sigma notation.
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6. A snowball in the shape of a sphere of radius r is melting such that % =—-15

cm/hr. How fast is the volume changing when r = 3 cm?




7. Find the linearization of sin(z) at z = 0 and use it to approximate sin(0.2).
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8. Let f(z) = v/, and note that the slope of the secant line passing through (1, 1)
and (@,8) is m =%. The mean value theorem asserts that there exists a ¢ in the
interval [1,4] such that f’(c) Y4 Since the function f is increasing, this ¢ is
unique. Find it.
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9. Find and classify the critical points of f(z) = z3(z% + 1)2. What is the absolute
maximum and absolute minimum of f(z) on the interval {—1,4]?
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10. What is the indefinite integral of 2% — 3z + 7 — -7
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11. Find a Riemann sum which approximates the area under the curve y = sin(z) be-
tween z = 0 and z = 27 using n = 6 rectangles using left-endpoint approximation

and evaluate.
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12. Suppose f'(z) = z*(z — 1)(z +2). Find the critical points of f. Find the intervals
where f is increasing and where f is decreasing, and the intervals where f is
concave up and concave down. Use the second derivative test to classify the

critical points of f as local maxima/minima or neither.
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