Math 1501 Exam 2 Fall 2013

Instructor: Sal Barone
Name: \< E-k{

GT username:

Circle your TA /section: (N1) Daniel (N2) Rebecca (C1) Rachel (C2) Lily

1. No books or notes are allowed.

2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calcu-
lators. All other electronic devices are not allowed.

3. Show all work to receive full credit.

4. Write your answers in the box provided.

5. Good luck!
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1. Find f"(z) if f(z) = In (33'6—)
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2. Suppose f is continuous on (—o0,00) and differentiable for all 2 except at z = 0
and z = 1, and that

3e* ifz <0,
fz)=K0 if0<z<l,

3 ifz>1.
Compute the average rate of change of f on the interval [—1, 2]. (10 pts.)
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3. Let f(z) =

(i) Find and classify the critical points of f(z) as a local maximum, local

minimum, or neither. (14 pts.)
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(ii) Find the absolute maximum and absolute minimum values of the func-
tion f(x) on the interval [—1,0]. (6 pts.)
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4. A 13-ft ladder is leaning against the wall as the base starts to slide away. By the
time the base is 5 ft from the wall, the base is moving at the rate of 3 ft/sec.

(i) How fast is the side of the ladder sliding down the wall at this time?

(10 pts.)
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(ii) At what rate is the area of the triangle formed by the ladder, ground,
and wall changing at this time? (10 pts.)
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5. Suppose f is defined on [0, 7] and f'(z) = sin(z) cos(z). Then y = f(z) is concave
up on the interval(s)
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6. Which of the following are always true for a function f from R to R?
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(10 pts.)
\/63 If f is a polynomial of odd degree, then there exists a root ¢ of f such
that f(c) =0.
(IT) If f'(c) = 0 and f"(c) <0, then (c, f(c)) is a local minimTim. g
V(’III) Either f is increasing on the interval (a,b) or f is decreasing on the
interval (a,b) if f is differentiable and has no critical points in (a, b).

(A) I only.
(B) 1I only.
(C) I1&1IL

(E) All are true.



7. Let f(z) = z — y/z. Using the linearization of f(z) at z = 9 one finds that f(7)
is approximately (10 pts.)
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8. Which of the following sums in sigma notation expresses the sequence (10 pts.)
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