

1. Integrate $\int \frac{\ln(x^{2/3})}{x} dx$.
2. Find the particular solution $y = f(x)$ which satisfies the separable differential equation $2y' \sqrt{x} = e^{\sqrt{x}-y}$ and $y(1) = 0$.
3. Let R be the region bounded by one arc of the secant curve $y = \sec x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, and the line $y = \sqrt{2}$.
 - (i) Find the area of R .
 - (ii) Find the volume of the solid obtained by rotating R about the x -axis.
4. A certain spring is 2 meters long at rest, and it takes 10 N of force to compress the spring to 1.5 meters. Find the work needed to stretch the spring from 3 meters to 5 meters.
5. A certain population of bacteria triples every 21 days. How long does it take for the number of bacteria to double?
6. Find the length of the curve

$$y = \int_0^x \sqrt{\cos 2t} dt$$

from $x = 0$ to $x = \pi/4$.

7. Find the value of the definite integral $\int_0^{\pi/4} x^2 \sin(2x) dx$.
8. Which of the following statements are always true for functions f, g from \mathbb{R} to \mathbb{R} ?
(Assume that f, g are eventually positive)
 - (I) If f is a polynomial of degree n and g is a polynomial of degree m , and $n < m$, then $f = O(g)$.
 - (II) If $f = O(g)$ and $g = O(f)$, then $\lim_{x \rightarrow \infty} \frac{f(x)}{g(x)} = 1$.
 - (III) Suppose $f = O(x)$ and $g = O(x^2)$, then $f = O(g)$.
9. Which of the following sequences converge?

- (I) $a_n = \frac{(-1)^n}{n!}$,
- (II) $b_n = \cos\left(\frac{n\pi}{n+1}\right)$,
- (III) $c_n = \frac{e^n}{n^2}$.