

Math 1501 Calc I

Fall 2013

Lesson 1 - Lesson 8

Instructor: Sal Barone

School of Mathematics
Georgia Tech

August 19 - August 6, 2013
(updated September 1, 2013)

FIRST DAY

- Syllabus, homework set, practice quizzes & exams
 - <http://people.math.gatech.edu/~sbarone7/ma1501.html>

FIRST DAY

- Syllabus, homework set, practice quizzes & exams
 - <http://people.math.gatech.edu/~sbarone7/ma1501.html>
- MyLab online homework
 - <http://portal.mypearson.com/mypearson-login.jsp>

FIRST DAY

- Syllabus, homework set, practice quizzes & exams
 - <http://people.math.gatech.edu/~sbarone7/ma1501.html>
- MyLab online homework
 - <http://portal.mypearson.com/mypearson-login.jsp>
- Important dates:
 - First homework due Tuesday, August 20 (tomorrow)
 - First quiz Thursday, August 22
 - Exam 1 Tuesday, September 10

L1: FUNCTIONS, DOMAIN & RANGE

Covered sections: §1.1

Quiz 1 (L1-L2) Thursday, August 22

L1: FUNCTIONS, DOMAIN & RANGE

Definition

A *function* f from \mathbb{R} to \mathbb{R} is a rule that assigns to each number x a unique number $f(x)$.

L1: FUNCTIONS, DOMAIN & RANGE

Definition

A *function* f from \mathbb{R} to \mathbb{R} is a rule that assigns to each number x a unique number $f(x)$.

Definition

The *domain* D of a function f is the subset of \mathbb{R} where the function is defined. The *range* R of f is the subset of \mathbb{R} consisting of all the function values which are hit by f , that is, those y values such that $y = f(x)$ for some x in the domain.

L1: FUNCTIONS, DOMAIN & RANGE

Definition

A *function* f from \mathbb{R} to \mathbb{R} is a rule that assigns to each number x a unique number $f(x)$.

Definition

The *domain* D of a function f is the subset of \mathbb{R} where the function is defined. The *range* R of f is the subset of \mathbb{R} consisting of all the function values which are hit by f , that is, those y values such that $y = f(x)$ for some x in the domain.

Definition

A function is *even* if $f(x) = f(-x)$ for all x in the domain of f .

A function f is *odd* if $f(x) = -f(x)$ for all x in its domain.

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that
makes an angle of θ with the x -axis

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that
makes an angle of θ with the x -axis

$$f(\theta) = (\cos \theta, \sin \theta)$$

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = (\cos \theta, \sin \theta)$$

find the y -value of the point on the unit circle that makes an angle of θ with the x -axis

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = (\cos \theta, \sin \theta)$$

find the y -value of the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = \sin \theta$$

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = (\cos \theta, \sin \theta)$$

find the y -value of the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = \sin \theta$$

round up x to the nearest integer

L1: FUNCTIONS, DOMAIN & RANGE

Are they functions from \mathbb{R} to \mathbb{R} ?

multiply x by 2

$$f(x) = 2x$$

add x and y

$$f(x, y) = x + y$$

add 2 to x

$$f(x) = 2 + x$$

find the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = (\cos \theta, \sin \theta)$$

find the y -value of the point on the unit circle that makes an angle of θ with the x -axis

$$f(\theta) = \sin \theta$$

round up x to the nearest integer

$$f(x) = \lceil x \rceil$$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$
Quadratic	$y = ax^2 + bx + c$	$y = x^2 - 1$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$
Quadratic	$y = ax^2 + bx + c$	$y = x^2 - 1$
Polynomial	$y = a_nx^n + \dots + a_1x + a_0$	$y = x^3 - 1$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$
Quadratic	$y = ax^2 + bx + c$	$y = x^2 - 1$
Polynomial	$y = a_nx^n + \dots + a_1x + a_0$	$y = x^3 - 1$
Rational	$y = \frac{f(x)}{g(x)}$	$y = \frac{1}{1+x^2}$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$
Quadratic	$y = ax^2 + bx + c$	$y = x^2 - 1$
Polynomial	$y = a_nx^n + \dots + a_1x + a_0$	$y = x^3 - 1$
Rational	$y = \frac{f(x)}{g(x)}$	$y = \frac{1}{1+x^2}$
Exponential	$y = c \cdot a^{kx}$	$y = 2e^{3x}$

L1: FUNCTIONS, DOMAIN & RANGE

Some typical functions:

<u>Name</u>	<u>Form</u>	<u>Example</u>
Linear	$y = mx + b$	$y = 3x + 1$
Quadratic	$y = ax^2 + bx + c$	$y = x^2 - 1$
Polynomial	$y = a_nx^n + \dots + a_1x + a_0$	$y = x^3 - 1$
Rational	$y = \frac{f(x)}{g(x)}$	$y = \frac{1}{1+x^2}$
Exponential	$y = c \cdot a^{kx}$	$y = 2e^{3x}$
Logarithmic	$y = c \cdot \log_b ax$	$y = \log_2 x$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Covered sections: §1.2 & §1.3

Quiz 1 Thursday (L1-L2), August 22

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Definition

The *composition* of two functions, denoted by $f \circ g$ and read as “ f circle g ” is the function defined by $f \circ g := f(g(x))$.

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

- vertical shift: $y = f(x) + k$ moves the graph of f **up** k units.
- horizontal shift: $y = f(x + k)$ moves graph of f **left** k units.

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

- vertical shift: $y = f(x) + k$ moves the graph of f **up** k units.
- horizontal shift: $y = f(x + k)$ moves graph of f **left** k units.

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
<u>vertical stretching</u> :	$y = cf(x)$	$y = 2x^2$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

- vertical shift: $y = f(x) + k$ moves the graph of f **up** k units.
- horizontal shift: $y = f(x + k)$ moves graph of f **left** k units.

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
<u>vertical stretching</u> :	$y = cf(x)$	$y = 2x^2$
<u>vertical compression</u> :	$y = \frac{1}{c}f(x)$	$y = \frac{1}{2}x^2$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

- vertical shift: $y = f(x) + k$ moves the graph of f **up** k units.
- horizontal shift: $y = f(x + k)$ moves graph of f **left** k units.

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
vertical stretching:	$y = cf(x)$	$y = 2x^2$
vertical compression:	$y = \frac{1}{c}f(x)$	$y = \frac{1}{2}x^2$
horizontal stretching:	$y = f\left(\frac{x}{c}\right)$	$y = \left(\frac{x}{2}\right)^2$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Shifting horizontally/vertically the graph of a function:

- vertical shift: $y = f(x) + k$ moves the graph of f **up** k units.
- horizontal shift: $y = f(x + k)$ moves graph of f **left** k units.

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
vertical stretching:	$y = cf(x)$	$y = 2x^2$
vertical compression:	$y = \frac{1}{c}f(x)$	$y = \frac{1}{2}x^2$
horizontal stretching:	$y = f\left(\frac{x}{c}\right)$	$y = \left(\frac{x}{2}\right)^2$
horizontal compression:	$y = f(cx)$	$y = (2x)^2$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
<u>vertical stretching:</u>	$y = cf(x)$	$y = 2x^2$
<u>vertical compression:</u>	$y = \frac{1}{c}f(x)$	$y = \frac{1}{2}x^2$
<u>horizontal stretching:</u>	$y = f\left(\frac{x}{c}\right)$	$y = \left(\frac{x}{2}\right)^2$
<u>horizontal compression:</u>	$y = f(cx)$	$y = (2x)^2$

For $c = -1$ the graph is **reflected**

across x -axis:

$$y = -f(x)$$

$$y = -x^2$$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Scaling/reflecting the graph of a function:

For $c > 1$ the graph $y = f(x)$ is **scaled** as follows

Type	Form	Example
<u>vertical stretching:</u>	$y = cf(x)$	$y = 2x^2$
<u>vertical compression:</u>	$y = \frac{1}{c}f(x)$	$y = \frac{1}{2}x^2$
<u>horizontal stretching:</u>	$y = f\left(\frac{x}{c}\right)$	$y = \left(\frac{x}{2}\right)^2$
<u>horizontal compression:</u>	$y = f(cx)$	$y = (2x)^2$

For $c = -1$ the graph is **reflected**

<u>across x-axis:</u>	$y = -f(x)$	$y = -x^2$
<u>across y-axis:</u>	$y = f(-x)$	$y = (-x)^2$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Trigonometric functions

$$\sin \theta = \frac{\text{opp}}{\text{hyp}} = \frac{y}{r}$$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}} = \frac{x}{r}$$

$$\tan \theta = \frac{\text{opp}}{\text{adj}} = \frac{y}{x}$$

$$\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{r}{y}$$

$$\sec \theta = \frac{\text{hyp}}{\text{adj}} = \frac{r}{x}$$

$$\tan \theta = \frac{\text{adj}}{\text{opp}} = \frac{x}{y}$$

L2: COMBINING FUNCTIONS, TRIG FUNCTIONS

Trigonometric identities

- $\sin^2 \theta + \cos^2 \theta = 1$
- $1 + \tan^2 \theta = \sec^2 \theta$
- $1 + \cot^2 \theta = \csc^2 \theta$
- $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
- $\sin 2\theta = 2 \sin \theta \cos \theta$
- $\cos^2 \theta = \frac{1+\cos 2\theta}{2}$
- $\sin^2 \theta = \frac{1-\cos 2\theta}{2}$

L3: EXPONENTIAL, INVERSE, AND LOGARITHMIC FUNCTIONS

Covered sections: §1.5 & §1.6

Quiz 2 Thursday, August 29

L3: EXPONENTIAL, INVERSE, AND LOGARITHMIC FUNCTIONS

Exponent rules

- $a^x \cdot a^y = a^{x+y}$
- $(a^x)^y = a^{xy}$
- $a^x \cdot b^x = (ab)^x$
- $a^{-x} = \frac{1}{a^x}$

L3: EXPONENTIAL, INVERSE, AND LOGARITHMIC FUNCTIONS

Exponent rules

- $a^x \cdot a^y = a^{x+y}$
- $(a^x)^y = a^{xy}$
- $a^x \cdot b^x = (ab)^x$
- $a^{-x} = \frac{1}{a^x}$
- $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$
- $\frac{a^x}{a^y} = a^{x-y}$
- $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$

L3: EXPONENTIAL, INVERSE, AND LOGARITHMIC FUNCTIONS

Inverse functions

Definition

f is *one-to-one* if every value y in the range of f is hit exactly once, in symbols

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

L3: EXPONENTIAL, INVERSE, AND LOGARITHMIC FUNCTIONS

Inverse functions

Definition

f is *one-to-one* if every value y in the range of f is hit exactly once, in symbols

$$f(x_1) = f(x_2) \implies x_1 = x_2.$$

Definition

If f is one-to-one then f has an *inverse function*, denoted f^{-1} , which is the function which “undoes” whatever f does. In symbols $f \circ f^{-1}(x) = x$ and $f^{-1} \circ f(x) = x$.

L4: AVERAGE RATE OF CHANGE AND LIMITS

Covered sections: §2.1 & §2.2

Quiz 2 Thursday, August 29

L4: AVERAGE RATE OF CHANGE AND LIMITS

Definition

The *average rate of change* of the function $f(x)$ over the interval $[a, b]$ is given by the equation

$$\frac{f(b) - f(a)}{b - a}.$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

Definition

The *average rate of change* of the function $f(x)$ over the interval $[a, b]$ is given by the equation

$$\frac{f(b) - f(a)}{b - a}.$$

Definition

The *line tangent to the curve* $y = f(x)$ at $x = a$ is the line which touches the curve $y = f(x)$ at $x = a$ and such that the line has the same direction as $y = f(x)$ at $x = a$.

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

length of interval h

average rate of change

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

length of interval h

1

average rate of change

$$\frac{f(2) - f(1)}{2 - 1} = \frac{4 - 1}{1} = 3$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

length of interval h

1

average rate of change

$$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3$$

.5

$$\frac{f(1.5)-f(1)}{1.5-1} = \frac{2.25-1}{.5} = 2.5$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

<u>length of interval h</u>	<u>average rate of change</u>
1	$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3$
.5	$\frac{f(1.5)-f(1)}{1.5-1} = \frac{2.25-1}{.5} = 2.5$
.25	$\frac{f(1.25)-f(1)}{1.25-1} = \frac{1.5625}{.25} = 2.25$

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

<u>length of interval h</u>	<u>average rate of change</u>
1	$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3$
.5	$\frac{f(1.5)-f(1)}{1.5-1} = \frac{2.25-1}{.5} = 2.5$
.25	$\frac{f(1.25)-f(1)}{1.25-1} = \frac{1.5625}{.25} = 2.25$
.1	$\frac{f(1.1)-f(1)}{1.1-1} = \frac{1.21-1}{.1} = 2.1$

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

<u>length of interval h</u>	<u>average rate of change</u>
1	$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3$
.5	$\frac{f(1.5)-f(1)}{1.5-1} = \frac{2.25-1}{.5} = 2.5$
.25	$\frac{f(1.25)-f(1)}{1.25-1} = \frac{1.5625}{.25} = 2.25$
.1	$\frac{f(1.1)-f(1)}{1.1-1} = \frac{1.21-1}{.1} = 2.1$
.001	$\frac{f(1.001)-f(1)}{1.001-1} = \frac{1.002001-1}{.001} = 2.001$

L4: AVERAGE RATE OF CHANGE AND LIMITS

What is the **slope** of the line tangent to the curve $y = x^2$ at $x = 1$? How can you approximate it?

<u>length of interval h</u>	<u>average rate of change</u>
1	$\frac{f(2)-f(1)}{2-1} = \frac{4-1}{1} = 3$
.5	$\frac{f(1.5)-f(1)}{1.5-1} = \frac{2.25-1}{.5} = 2.5$
.25	$\frac{f(1.25)-f(1)}{1.25-1} = \frac{1.5625}{.25} = 2.25$
.1	$\frac{f(1.1)-f(1)}{1.1-1} = \frac{1.21-1}{.1} = 2.1$
.001	$\frac{f(1.001)-f(1)}{1.001-1} = \frac{1.002001-1}{.001} = 2.001$

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

Definition

The *limit* of a function $y = f(x)$ as x approaches a is y_0 if the following happens:

$f(x)$ gets closer and closer to y_0 as x gets closer and closer to a .

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

Definition

The *limit* of a function $y = f(x)$ as x approaches a is y_0 if the following happens:

$f(x)$ gets closer and closer to y_0 as x gets closer and closer to a .

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

Definition

The *limit* of a function $y = f(x)$ as x approaches a is y_0 if the following happens:

$f(x)$ gets closer and closer to y_0 as x gets closer and closer to a .

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

Definition

The *limit* of a function $y = f(x)$ as x approaches a is y_0 if the following happens:

$f(x)$ gets closer and closer to y_0 as x gets closer and closer to a .

In this case write

$$\lim_{x \rightarrow a} f(x) = y_0$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

We will use the temporary, imprecise definition of *limit*.

Definition

The *limit* of a function $y = f(x)$ as x approaches a is y_0 if the following happens:

$f(x)$ gets closer and closer to y_0 as x gets closer and closer to a .

In this case write

$$\lim_{x \rightarrow a} f(x) = y_0$$

or equivalently

$$f(x) \xrightarrow{x \rightarrow a} y_0.$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow -1} \frac{x^2 - 6x + 9}{x^2 - 9}$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

<u>x-value</u>	<u>$f(x)$-value</u>
3.1	$\frac{(3.1)^2 - 6(3.1) + 9}{(3.1)^2 - 9} = .0163\dots$

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow -1} \frac{x^2 - 6x + 9}{x^2 - 9}$$

<u>x-value</u>	<u>$f(x)$-value</u>
3.1	$\frac{(3.1)^2 - 6(3.1) + 9}{(3.1)^2 - 9} = .0163\dots$
2.9	$\frac{(2.9)^2 - 6(2.9) + 9}{(2.9)^2 - 9} = -.0163\dots$

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

<u>x-value</u>	<u>$f(x)$-value</u>	
3.1	$\frac{(3.1)^2 - 6(3.1) + 9}{(3.1)^2 - 9} = .0163\dots$	
2.9	$\frac{(2.9)^2 - 6(2.9) + 9}{(2.9)^2 - 9} = -.0163\dots$	
3.01	$\frac{(3.01)^2 - 6(3.01) + 9}{(3.01)^2 - 9} = .0016\dots$	

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

<u>x-value</u>	<u>$f(x)$-value</u>
3.1	$\frac{(3.1)^2 - 6(3.1) + 9}{(3.1)^2 - 9} = .0163\dots$
2.9	$\frac{(2.9)^2 - 6(2.9) + 9}{(2.9)^2 - 9} = -.0163\dots$
3.01	$\frac{(3.01)^2 - 6(3.01) + 9}{(3.01)^2 - 9} = .0016\dots$
2.99	$\frac{(2.99)^2 - 6(2.99) + 9}{(2.99)^2 - 9} = -.0016\dots$

L4: AVERAGE RATE OF CHANGE AND LIMITS

An example: what is the limit?

$$\lim_{x \rightarrow 3} \frac{x^2 - 6x + 9}{x^2 - 9}$$

<u>x-value</u>	<u>$f(x)$-value</u>	
3.1	$\frac{(3.1)^2 - 6(3.1) + 9}{(3.1)^2 - 9} = .0163\dots$	
2.9	$\frac{(2.9)^2 - 6(2.9) + 9}{(2.9)^2 - 9} = -.0163\dots$	
3.01	$\frac{(3.01)^2 - 6(3.01) + 9}{(3.01)^2 - 9} = .0016\dots$	
2.99	$\frac{(2.99)^2 - 6(2.99) + 9}{(2.99)^2 - 9} = -.0016\dots$	
3	$\frac{(3)^2 - 6(3) + 9}{(3)^2 - 9} = \mathbf{0!}$	

L4: AVERAGE RATE OF CHANGE AND LIMITS

Limit rules:

- If $P(x) = a_nx^n + \dots + a_1x + a_0$ is a polynomial, then

$$\lim_{x \rightarrow a} P(x) = P(a).$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

Limit rules:

- If $P(x) = a_nx^n + \dots + a_1x + a_0$ is a polynomial, then

$$\lim_{x \rightarrow a} P(x) = P(a).$$

Example: $\lim_{x \rightarrow -2} x^2 - 3x + 1 = (-2)^2 - 3(-2) + 1 = 11.$

L4: AVERAGE RATE OF CHANGE AND LIMITS

Limit rules:

- If $P(x) = a_nx^n + \dots + a_1x + a_0$ is a polynomial, then

$$\lim_{x \rightarrow a} P(x) = P(a).$$

- If $f(x) = \frac{P(x)}{Q(x)}$ is rational, so $P(x), Q(x)$ are polynomials, and $Q(a) \neq 0$, then

$$\lim_{x \rightarrow a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}.$$

L4: AVERAGE RATE OF CHANGE AND LIMITS

Limit rules:

- If $P(x) = a_n x^n + \dots + a_1 x + a_0$ is a polynomial, then

$$\lim_{x \rightarrow a} P(x) = P(a).$$

- If $f(x) = \frac{P(x)}{Q(x)}$ is rational, so $P(x), Q(x)$ are polynomials, and $Q(a) \neq 0$, then

$$\lim_{x \rightarrow a} \frac{P(x)}{Q(x)} = \frac{P(a)}{Q(a)}.$$

Example: $\lim_{x \rightarrow 1} \frac{x^2 - 1}{x + 3} = 0$.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M,$
- $\lim_{x \rightarrow a} cf(x) = cL,$
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM,$
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M,$ and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M$,
- $\lim_{x \rightarrow a} cf(x) = cL$,
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM$,
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M$, and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M,$
- $\lim_{x \rightarrow a} cf(x) = cL,$
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM,$
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M,$ and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M,$
- $\lim_{x \rightarrow a} cf(x) = cL,$
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM,$
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M,$ and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M,$
- $\lim_{x \rightarrow a} cf(x) = cL,$
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM,$
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M,$ and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L4: AVERAGE RATE OF CHANGE AND LIMITS

More limit rules: If $\lim_{x \rightarrow a} f(x) = L$ and $\lim_{x \rightarrow a} g(x) = M$, then

- $\lim_{x \rightarrow a} (f(x) + g(x)) = L + M,$
- $\lim_{x \rightarrow a} cf(x) = cL,$
- $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = LM,$
- $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = L/M,$ and
- $\lim_{x \rightarrow a} (f(x))^{1/n} = L^{1/n}$ provided n is a positive integer and $L > 0$ if n is even.

L5: PRECISE DEFINITION OF A LIMIT¹

Covered sections: §2.3

Quiz 2 Thursday, August 29

¹no lecture slides

L6: LIMITS INVOLVING INFINITY, ONE SIDED LIMITS AND CONTINUITY²

Covered sections: §2.4, §2.5 & §2.6

Quiz 3 Thursday, September 5

STATUS CHECK:

- Its ok to admit that you need help.

STATUS CHECK:

- Its ok to admit that you need help.
- **Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).**

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).
- **Come to office hours if you have questions. The 4 TAs have office hours that you can all go to:**
 - Sal: Mon 11-12, Wed 11-1.
 - Daniel: Tues 10-11.
 - Rebecca: Wed 1-2.
 - Rachel: Tues 11-12, Wed 2-3.
 - Lily: Tues 11-12.

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).
- Come to office hours if you have questions. The 4 TAs have office hours that you can all go to:
 - Sal: Mon 11-12, Wed 11-1.
 - Daniel: Tues 10-11.
 - Rebecca: Wed 1-2.
 - Rachel: Tues 11-12, Wed 2-3.
 - Lily: Tues 11-12.
- **Office hour questions may be:**

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).
- Come to office hours if you have questions. The 4 TAs have office hours that you can all go to:
 - Sal: Mon 11-12, Wed 11-1.
 - Daniel: Tues 10-11.
 - Rebecca: Wed 1-2.
 - Rachel: Tues 11-12, Wed 2-3.
 - Lily: Tues 11-12.
- Office hour questions may be:
 - How do you do this homework problem? (should also get these answers in recitation)

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).
- Come to office hours if you have questions. The 4 TAs have office hours that you can all go to:
 - Sal: Mon 11-12, Wed 11-1.
 - Daniel: Tues 10-11.
 - Rebecca: Wed 1-2.
 - Rachel: Tues 11-12, Wed 2-3.
 - Lily: Tues 11-12.
- Office hour questions may be:
 - How do you do this homework problem? (should also get these answers in recitation)
 - Why did I get this grade on a quiz?

STATUS CHECK:

- Its ok to admit that you need help.
- Study at least 1 hour per lecture (including doing the homework) and go over each quiz after you get it back to try to figure out what you did wrong (up to 20 minutes).
- Try to solve problems without notes or book (not at first, but how else will you know if you are ready for the quiz?).
- Come to office hours if you have questions. The 4 TAs have office hours that you can all go to:
 - Sal: Mon 11-12, Wed 11-1.
 - Daniel: Tues 10-11.
 - Rebecca: Wed 1-2.
 - Rachel: Tues 11-12, Wed 2-3.
 - Lily: Tues 11-12.
- Office hour questions may be:
 - How do you do this homework problem? (should also get these answers in recitation)
 - Why did I get this grade on a quiz?
 - **The way I did this HW problem is different than the way you did it in class, is that ok?**

STATUS CHECK:

What should a week look like?

- Learn how to do it in MWF lectures.

STATUS CHECK:

What should a week look like?

- Learn how to do it in MWF lectures.
- Practice doing it on homework which is due on Tuesdays (2 assignments) and Thursdays (1 assignment), ask questions in TTh recitation to figure out how to do specific harder homework problems.

STATUS CHECK:

What should a week look like?

- Learn how to do it in MWF lectures.
- Practice doing it on homework which is due on Tuesdays (2 assignments) and Thursdays (1 assignment), ask questions in TTh recitation to figure out how to do specific harder homework problems.
- Track your grade trajectory with the quiz grades to get a feel for how well you should do on the exam. If your quiz grades are not in the range you want (90-100=A, 80-90=B, 70-80=C, etc.), then you should not expect the grade that you want on the exam; you need to change your study habits.

STATUS CHECK:

What should a week look like?

- Learn how to do it in MWF lectures.
- Practice doing it on homework which is due on Tuesdays (2 assignments) and Thursdays (1 assignment), ask questions in TTh recitation to figure out how to do specific harder homework problems.
- Track your grade trajectory with the quiz grades to get a feel for how well you should do on the exam. If your quiz grades are not in the range you want (90-100=A, 80-90=B, 70-80=C, etc.), then you should not expect the grade that you want on the exam; you need to change your study habits.
- TAs and I can give some pointers on good ways to study.

L7: ASYMPTOTES AND THE DEFINITION OF THE DERIVATIVE

Covered sections: §2.6 & §3.1

Quiz 3 Thursday, September 5

L8: THE DERIVATIVE AS A FUNCTION, EQUATION OF THE TANGENT LINE

Covered sections: §3.2

Exam 1 Tuesday, September 10