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L9: DIFFERENTIATION RULES

Covered sections: §3.3 & §3.5

Exam 1 (L1-L8) Tuesday, September 10 (tomorrow)

Quiz 4 (L9-L10) Thursday, September 12



L9: DIFFERENTIATION RULES

Many symbols are used to notate the derivative of y = f (x)
with respect to x:

f ′ = y′ =
d
dx

f =
df
dx

=
dy
dx
.

Remember the derivative f ′(x) is:

· the slope of the tangent line of y = f (x) at x,

· the instantaneous rate of change of f (x) at x,
· defined as the limit of the difference quotient of f (x) near x.
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L9: DIFFERENTIATION RULES

A differentiation rule is a rule that you can use to find f ′.

Rule: (Power rule)
d
dx(xn) = nxn−1 for any n.

Rule: (Constant multiple & Sum rules)

d
dx

(cf ) = c
df
dx

d
dx

(f + g) =
df
dx

+
dg
dx
,

for any constant c and functions f (x), g(x).
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L9: DIFFERENTIATION RULES

Rule: (Exponential function)
d
dx(ex) = ex and d

dx(ekx) = kekx.

Rule: (Product rule)

d
dx

(uv) =
du
dx

v + u
dv
dx

for any functions u(x) and v(x).

Rule: (Quotient rule)

(u
v

)′
=

vu′ − uv′

v2

for any functions u(x) and v(x).
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L9: DIFFERENTIATION RULES

Definition
The derivative of the derivative of f is called the second
derivative and denoted f ′′. The n-th derivative of f is the
function obtained by taking the derivative of f n-times, and
denoted f (n) if n > 3.

f , f ′, f ′′, f ′′′, f (4), . . . , f (n), . . .



L9: DIFFERENTIATION RULES

The derivatives of trig functions:

(sin θ)′ = cos(θ)

(cos θ)′ = - sin(θ)

(tan θ)′ = sec2(θ)

(csc θ)′ = - csc(θ) cot(θ)

(sec θ)′ = sec(θ) tan(θ)

(cot θ)′ = - csc2(θ)



L10: THE CHAIN RULE & APPLICATIONS OF THE

DERIVATIVE

Covered sections: §3.4 & §3.6

Quiz 4 (L9-L10) Thursday, September 12
(tomorrow)



L10: THE CHAIN RULE & APPLICATIONS OF THE

DERIVATIVE

Recall: the derivative f ′ of f (x) is the instantaneous rate of
change of f with respect to x.

In Physics:
· If s(t) is the position of a body, then s′ is the body’s velocity.
· If v(t) is the velocity of a body, then v′ is the body’s

acceleration.
· If a(t) is the acceleration of a body, then a′ is the body’s jerk.

In Economics:
· If c(x) is the cost to produce x units of a product, then c′ is

the marginal cost of production.
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L10: THE CHAIN RULE & APPLICATIONS OF THE

DERIVATIVE

Rule: (The chain rule)
The derivative of g ◦ f (x) is

f ′(x) · g′(f (x)),

or using alternate notation

df
dx

(x) · dg
dx

(f (x)).



L11: IMPLICIT DIFFERENTIATION

Covered sections: §3.7

Quiz 5 (L11-L13) Thursday, September 19



L11: IMPLICIT DIFFERENTIATION

Exam 1 results are in:

AVG = 84.4 σ = 12.6 N = 128

Grade Range How many
A 90-100 51
B 80-90 39
C 70-80 21
D 60-70 11
F 0-50 6



L11: IMPLICIT DIFFERENTIATION

Exam 1 page results breakdown:

Page Avg % σ

Page 1 71% 4.6
Page 2 87% 2.1
Page 3 91% 3.2
Page 4 89% 4.7
Page 5 84% 3.8



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Covered sections: §3.8 & §3.9

Quiz 5 (L11-L13) Thursday, September 19



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Rule: (Derivative of logarithms)

(ln(x))′ = 1
x and

(
logb(x)

)′ = 1
x ln(b) .



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Rule: (Derivative of inverse trig functions & inverse
function-inverse Cofunction identitites)

cos-1 x = π/2− sin-1 x

cot-1 x = π/2− tan-1 x

cos-1 x = π/2− sec-1 x



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Rule: (Derivative of inverse trig functions & inverse
function-inverse Cofunction identitites)

d
du sin-1(u) =

1√
1− u2

d
du tan-1(u) =

1
1 + u2

d
du sec-1(u) =

1
|u|
√

1− u2

cos-1 x = π/2− sin-1 x

cot-1 x = π/2− tan-1 x

cos-1 x = π/2− sec-1 x



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Rule: (Derivative of inverse trig functions & inverse
function-inverse Cofunction identitites)

d
du cos-1(u) =

-1√
1− u2

d
du cot-1(u) =

-1
1 + u2

d
du csc-1(u) =

-1
|u|
√

1− u2

cos-1 x = π/2− sin-1 x

cot-1 x = π/2− tan-1 x

cos-1 x = π/2− sec-1 x



L12: DERIVATIVES OF INVERSES, LOGS, INVERSE

TRIGONOMETRIC FUNCTIONS

Rule: (Derivative of inverses)(
f -1
)′

(x) =
1

f ′(f -1(x))



L13: RELATED RATES

Covered sections: §3.10

Quiz 5 (L11-L13) Thursday, September 19
(tomorrow)



L13: RELATED RATES

· The radius of a very large circle is decreasing at 3 in/sec.
How is the area of the circle changing when the radius is
10 in?

· Find the rate of change in area over time of a rectange of
fixed radius 100 cm if the base is increasing at 2 cm/sec at
the moment when the rectangle is a square.
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L13: RELATED RATES

General strategy for solving related rates problems:

· Draw and label a picture. Be sure to include variables.

· What do you want? What do you have?
· Find an equation(s) which relates all important quantities.
· Take a derivative (usually d

dt ) of both sides.
· Solve for what you ’want’ from above.
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L13: RELATED RATES

· A rope running through a pulley at P and bearing a weight
W is being pulled by a workers hand 5 ft above the
ground. If the pulley is 25 ft above the ground, the rope is
45 ft long and the worker is walking rapidly away at a rate
of 6 ft/sec, then how fast is the weight being lifted when
the worker is 21 ft from under the weight?
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L13: RELATED RATES

· You are watching NASCAR from a stand 132 ft from the
track. As a car approaches moving 180 mi/hr (264 ft/sec),
how fast will your head be turning when the car is right in
front of you? What about a half second later after it has
passed?



L13: RELATED RATES

· You are watching NASCAR from a stand 132 ft from the
track. As a car approaches moving 180 mi/hr (264 ft/sec),
how fast will your head be turning when the car is right in
front of you? What about a half second later after it has
passed?



L13: RELATED RATES

· A girl flies a kite at a height of 300 ft while the wind is
carrying the kite horizontally away from her at a rate of 25
ft/sec. How fast must she let out the string when the kite
is 500 ft away?

· How fast is the angle the kite string makes with the
ground changing at this time?
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L13: RELATED RATES

· A girl flies a kite at a height of 300 ft while the wind is
carrying the kite horizontally away from her at a rate of 25
ft/sec. How fast must she let out the string when the kite
is 500 ft away?
· How fast is the angle the kite string makes with the

ground changing at this time?



L14: LINEARIZATION AND DIFFERENTIALS & THE

INTERMEDIATE VALUE THEOREM†, ROLLE’S

THEOREM∗, THE MEAN VALUE THEOREM∗

Covered sections: §3.11 & §2.5†, §4.2∗

Quiz 6 (L14-L16) Thursday, September 26



L14: LINEARIZATION AND DIFFERENTIALS &
ROLLE’S THEOREM∗, THE MEAN VALUE THEOREM∗

Definition
The linearization of a differentiable function f at a is

L(x) = f (a) + f ′(a)(x− a).

Fact: L(x) ≈ f (x) when x ≈ a.

Example
Use linearization to approximate

√
1.5,
√

5,
√

15.
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L14: LINEARIZATION AND DIFFERENTIALS &
ROLLE’S THEOREM∗, THE MEAN VALUE THEOREM∗

Definition
Let y = f (x) be a differentiable function. Then, the differential
dx is an independent variable and the differential dy is

dy = f ′(x) dx.

Fact: ∆y ≈ dy



L14: LINEARIZATION AND DIFFERENTIALS &
ROLLE’S THEOREM∗, THE MEAN VALUE THEOREM∗

Actual change
∆f = f (a + dx)− f (a)

Estimated change
df = f ′(a) dx

Example
Use differentials to approximate the increase in the area of a
circle when the radius r increases from a = 10 to a = 10.1.
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L14: LINEARIZATION AND DIFFERENTIALS &
ROLLE’S THEOREM∗, THE MEAN VALUE THEOREM∗

Example
You want to calculate the depth of a well from the equation
s = 16t2 by timing how long it takes to hear a stone splash in
the water below. How sensitive will your calculations be to a
0.1-second error in the measuring time if you hear the stone
after 2 seconds? After 5 seconds?

At which time is your calculation more sensitive to error?
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L14: LINEARIZATION AND DIFFERENTIALS &
ROLLE’S THEOREM∗, THE MEAN VALUE THEOREM∗

Theorem (Intermediate Value Theorem)
If f is a continuous function on [a, b] and y0 is a value between f (a)
and f (b), then there is some c in [a, b] such that f (c) = y0.

Theorem (Rolle’s Theorem)
Suppose f is continuous on [a, b] and differentiable on (a, b). If
f (a) = f (b) then there is at least one number c in (a, b) at which
f ′(c) = 0.

Theorem (Mean Value Theorem)
Suppose f is continuous on [a, b] and differentiable on (a, b). Then
there is at least one number c in (a, b) such that

f ′(c) =
f (b)− f (a)

b− a
.
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.



L15: ABSOLUTE AND LOCAL EXTREME VALUES,
CRITICAL POINTS

Covered sections: §4.1

Quiz 6 (L14-L16) Thursday, September 26



L15: ABSOLUTE AND LOCAL EXTREME VALUES,
CRITICAL POINTS

· A function f has a local maximum value at c within its
domain D if f (x) ≤ f (c) for all x ∈ D in an open interval
containing c.

· A function f has a local minimum value at c within its
domain D if f (x) ≥ f (c) for all x ∈ D in an open interval
containing c.
· A function f has a absolute maximum value at c within its

domain D if f (x) ≥ f (c) for all x ∈ D.
· A function f has a absolute minimum value at c within its

domain D if f (x) ≥ f (c) for all x ∈ D.
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CRITICAL POINTS

· A function f has a local maximum value at c within its
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containing c.
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L15: ABSOLUTE AND LOCAL EXTREME VALUES,
CRITICAL POINTS

Definition
A point x = a in the domain of f where f ′(a) = 0 or f ′ is
undefined is called a critical point of f .

Rule:
Local extrema of f only occur at critical points of f . Not all
critical points correspond to local extrema.

Rule:
Absolute maxima of f occur at critical points of f or at the
endpoints of a closed interval on which f is defined. Every
continuous function f defined on a closed interval [a, b] has an
absolute maximum AND an abolute minimum value, which
are obtained either at a, b, or a critical point c in (a, b).
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L15: ABSOLUTE AND LOCAL EXTREME VALUES,
CRITICAL POINTS

Definition
A point x = a in the domain of f where f ′(a) = 0 or f ′ is
undefined is called a critical point of f .

Rule:
Local extrema of f only occur at critical points of f . Not all
critical points correspond to local extrema.

Rule:
Absolute maxima of f occur at critical points of f or at the
endpoints of a closed interval on which f is defined. Every
continuous function f defined on a closed interval [a, b] has an
absolute maximum AND an abolute minimum value, which
are obtained either at a, b, or a critical point c in (a, b).



L16: INTERVALS OF INCREASE, DECREASE AND THE

FIRST DERIVATIVE TEST

Covered sections: §4.3

Quiz 6 (L14-L16) Thursday, September 26
(tomorrow)



L17: CONCAVITY & CURVE SKETCHING, 2ND

DERIVATIVE TEST

Covered sections: §4.4

Quiz 7 (L17-L19) Thursday, October 3



L17: CONCAVITY & CURVE SKETCHING, 2ND

DERIVATIVE TEST

Definition
If f ′′(c) > 0 then we say that f is concave up at x = c.

If f ′′(c) < 0 then we say that f is concave down at x = c.

If x = c is a value where the concavity changes, goes from up to
down or from down to up, then we say that x = c is an inflection
point.



L17: CONCAVITY & CURVE SKETCHING, 2ND

DERIVATIVE TEST

Rule: (2nd derivative test)
If x = c is a critical point of f and f ′′(c) > 0,
then x = c is a local minimum.

If x = c is a critical point of f and f ′′(c) < 0,
then x = c is a local maximum.



L18: APPLIED OPTIMIZATION (+L’HÔPITALS RULE)

Covered sections: §4.6

Quiz 7 (L17-L19) Thursday, October 3



L18: APPLIED OPTIMIZATION (+L’HÔPITALS RULE)

Rule: (L’Hôpitals rule)
If f (a)/g(a) is indeterminate of the form 0/0 then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Example
lim
x→0

1−cos x
x2
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L18: APPLIED OPTIMIZATION

Now some optimization word problems:

Example
What are the dimensions of the smallest can which has a
volume of 1024 cm3?

Example
A rectangle is to be inscribed in a circle of radius 3. Where
should the vertices of the rectangle go to maximize the area of
the rectangle?

Example
Suppose a company gets $9 for each widget it sells, and the cost
to make x widgets is c(x) = x3 − 6x2 + 15x. How many widgets
should the company try to sell in order to maximize profit?



L18: APPLIED OPTIMIZATION

Now some optimization word problems:

Example
What are the dimensions of the smallest can which has a
volume of 1024 cm3?

Example
A rectangle is to be inscribed in a circle of radius 3. Where
should the vertices of the rectangle go to maximize the area of
the rectangle?

Example
Suppose a company gets $9 for each widget it sells, and the cost
to make x widgets is c(x) = x3 − 6x2 + 15x. How many widgets
should the company try to sell in order to maximize profit?



L18: APPLIED OPTIMIZATION

Now some optimization word problems:

Example
What are the dimensions of the smallest can which has a
volume of 1024 cm3?

Example
A rectangle is to be inscribed in a circle of radius 3. Where
should the vertices of the rectangle go to maximize the area of
the rectangle?

Example
Suppose a company gets $9 for each widget it sells, and the cost
to make x widgets is c(x) = x3 − 6x2 + 15x. How many widgets
should the company try to sell in order to maximize profit?



L18: APPLIED OPTIMIZATION

Example
You are designing a poster to contain 50 in2 of printed material
with 4-in margins at the top and bottom and 2-in margins on
the sides. What are the smallest dimensions the paper could
have?

Example
What dimensions of a box with square sides and a girth of 64 in
(girth = length around) yield the maximum volume?

Example
An 8’ wall stands 27’ from a castle surrounded by a moat. What
is the shortest ladder than can be put on the ground outside the
wall and reach over the moat to the castle?
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L19: ANTIDERIVATIVES

Covered sections: §4.8

Quiz 7 (L17-L19) Thursday, October 3
(tomorrow)

EXAM 2 (L9-L20) Thursday, October 10



L19: ANTIDERIVATIVES

Definition
The antiderivative of f (x) is a function F(x) such that F′(x) = f (x).
The most general antiderivative of f is F(x) + C where C is an
arbitrary constant and F(x) is any antiderivative of f .

Example
Find ONE antiderivative, then find the general antiderivative.

· f (x) = x2 − x + 1
· f (x) =

√
x− 1√

x

· f (x) = sec 2x tan 2x + π

· f (x) = 3
2x − e−x
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L19: ANTIDERIVATIVES

Function

xn

sin kx

cos kx

sec2 kx

csc2 kx

sec kx tan kx

csc kx cot kx

General antiderivative

1
n+1 xn+1 + C

−1
k cos kx + C

1
k sin kx + C

1
k tan kx + C

−1
k cot kx + C

1
k sec kx + C

−1
k csc kx + C
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L19: ANTIDERIVATIVES

Function

ekx

1
x

1√
1−k2x2

1
1+k2x2

1
x
√

k2x2−1

akx

General antiderivative

1
k ekx + C

ln |x|+ C

1
k sin-1 kx + C

1
k tan-1 kx + C

sec-1 kx + C

1
k ln a akx + C, a > 0, a 6= 1
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L19: ANTIDERIVATIVES

Definition
The indefinite integral of f with respect to x is the collection of all
antiderivatives of f , denoted∫

f (x) dx.

The symbol
∫

is the integral sign. The function f is the integrand,
and x is the variable of integration.

Rule:

· Constant multiple rule:
∫

kf (x) dx = k
∫

f (x) dx.

· Negative rule:
∫
−f (x) dx = −

∫
f (x) dx.

· Sum or Difference rule:∫
f (x)± g(x) dx =

∫
f (x) dx±

∫
g(x) dx.
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L19: ANTIDERIVATIVES

A few examples:

Example
What is the slope of the line connecting the points (x1, f (x1))
and (x2, f (x2)) if f is continuous, f ′(x) = |x| and x1 = −2, x2 = 3?

Example
How many functions f are there such that f ′(x) = 1

x2 and
f (1) = 2?

Example
I leave from home at noon on a bike ride with initial speed 60
mph, and my acceleration for the whole trip is dv

dt = −30. When
do I get back home? What is my speed at that time?
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L20: SIGMA NOTATION

Today- Covered sections: §5.2 (On Exam 2)
Monday- Covered sections: §5.1 (NOT on Exam 2)

No quiz for this lesson.

EXAM 2 (L9-L20) Thursday, October 10



L20: SIGMA NOTATION

The notation
n∑

k=0

ak = a0 + a1 + · · ·+ an

or, add up ak’s from k = 0 to k = n.
For example,

3∑
k=0

2(k + 1) = 2(0 + 1) + 2(1 + 1) + 2(2 + 1) + 2(3 + 1) = 20.



L20: SIGMA NOTATION

The notation
∞∑

k=0

ak = lim
n→∞

n∑
k=0

ak.



L20: SIGMA NOTATION
Expand the sigma notation to compute the sums.

·
3∑

k=1

(−1)kk

·
4∑

i=0

2i + 1

·
3∑

k=0

k2 − 1

·
∞∑

k=0

2−k

·
∞∑

k=0

(−1)k

·
∞∑

k=0

k
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L20: SIGMA NOTATION

Write the sum in sigma notation:

· 1 + 2 + 4 + 8 + 16 + · · ·

· 1− 1
3 + 1

5 −
1
7 + 1

9

· 1
2 + 2

3 + 3
4 + 4

5 + · · ·
· −1

5 + 4
5 −

9
5 + 16

5 − 5 + 36
5 − · · ·
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L20: SIGMA NOTATION

Some rules:

1 Sum rule:
∑n

k=1(ak + bk) =
∑n

k=1 ak +
∑n

k=1 bk.

2 Constant multiple rule:
∑n

k=1 cak = c
∑n

k=1 ak.
3 Constant summand rule:

∑n
k=1 c = cn.

Example
If
∑n

k=1 ak = 0 and
∑n

k=1 bk = 3, then find

·
n∑

k=1

(3ak − bk)

·
n∑

k=1

(bk − 1)
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L20: SIGMA NOTATION

Rule: (The first n squares and cubes)

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6

and

n∑
k=1

k3 =
(

n(n + 1)
2

)2

.

Example
Calculate

lim
n→∞

n∑
k=1

(
1
n
− k2

n2 )
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