

Quiz 10 (L30-L32)

Show all work for full credit.

1. What is the y -value of the center of mass of a plate with constant density in the region R bounded by $y = x^2$ and $y = a^2$, where a is a constant? (5 pts.)

$$M_x = \int \bar{y} dm = \int_{-a}^a \frac{\delta}{2} [a^4 - x^4] dx = \delta \left(a^4 x - \frac{1}{5} x^5 \Big|_0^a \right)$$

$$M_x = \delta \left(a^5 - \frac{1}{5} a^5 \right) = \frac{4}{5} a^5 \cdot \delta$$

$$M_y = \int dm = \int_{-a}^a \delta [a^2 - x^2] dx = 2\delta \left(a^2 x - \frac{1}{3} x^3 \Big|_0^a \right) = \frac{4}{3} a^2 \cdot \delta$$

$$\bar{y} = \frac{M_x}{M} = \frac{\frac{4}{5} a^5 \cdot \delta}{\frac{4}{3} a^2 \cdot \delta} = \boxed{3a^2/5}$$

2. A spring at rest is 2m in length, and has spring constant $k = \ln 2$. What is the work done to pull the spring from a length of 3m to a length of 5m? (5 pts.)

$$W = \int_1^3 \ln 2 x dx = \frac{\ln 2}{2} x^2 \Big|_1^3 = \frac{\ln 2}{2} (9 - 1)$$

$$= \boxed{4 \ln 2 \text{ joules}}$$

3. Which of the following solves the differential equation $y' = y^2$? (5 pts.)

$$\frac{dy}{dx} = y^2$$

$$\int \frac{1}{y^2} dy = \int dx$$

(A) $y = \frac{1}{x}$

(B) $y = \frac{-1}{(x+1)^3}$

(C) $y = \frac{1}{(1-x)^2}$

(D) $y = \frac{1}{x-1}$

(E) $y = \frac{1}{1-x}$

$$-\frac{1}{y} = x + C$$

$$y = \frac{-1}{x+C}$$

→
w/ $C = 1$.