

Practice Quiz 11 SOLUTIONS (L33-L34)

Show all work for full credit.

1. Compute $\int_1^{e^\pi} \sin(\ln(x)) dx$. (Hint: do a u -substitution first)

Solution: We set up a u -substitution box
$$\begin{array}{l} w = \ln x \\ dw = 1/x dx \end{array}$$
 from which it follows that $e^w = x$ and so we have (I'm using w so I can use u later)

$$\int_1^{e^\pi} \sin(\ln(x)) dx = \int_0^\pi e^w \sin w dw.$$

Two integration by parts will allow us to *wrap around* and solve for the integral on the right hand side of the equation above.

$$\begin{aligned} & \begin{array}{ll} u = \sin w & dv = e^w dw \\ du = \cos w dw & v = e^w \end{array} & A &= \int_0^\pi e^w \sin w dw \\ & \begin{array}{ll} u = \cos w & dv = e^w dw \\ du = -\sin w dw & v = e^w \end{array} & &= \sin w \cdot e^w \Big|_0^\pi - \int_0^\pi e^w \cdot \cos w dw \\ & & &= \sin w \cdot e^w \Big|_0^\pi - \left[\cos w \cdot e^w \Big|_0^\pi - \int_0^\pi e^w \cdot (-\sin(w)) dw \right] \end{aligned}$$

Computing the first two terms of the last line above yield

$$A = 0 - (-e^\pi - 1) - A,$$

so $2A = e^\pi + 1$, and hence

$$A = \int_0^\pi e^w \sin w dw = \left[\frac{1}{2}e^\pi + \frac{1}{2} \right].$$

2. Which function goes to zero faster, $f(x) = e^{-x}$ or $g(x) = \frac{1}{x}$. (Hint: consider the asymptotic growth of the reciprocal of these functions)

Solution: Its easy to check that $\frac{1}{g} = O(\frac{1}{f})$ and $\frac{1}{f} \neq O(\frac{1}{g})$, so $1/f$ goes to infinity faster than $1/g$, which means that $f(x) = e^{-x}$ goes to zero faster than $g(x) = \frac{1}{x}$.