Math 1501

Instructor: Sal Barone

Name: _____

GT username: _____

- 1. No books or notes are allowed.
- 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic devices are not allowed.
- 3. Show all work and fully justify your answer to receive full credit.
- 4. Please BOX your answers.
- 5. Good luck!

Page	Max. Possible	Points
1	30	
2	30	
3	20	
4	20	
Total	100	

1. Consider the function

$$f(x) = x^3 - x^4.$$

(10 pts. each)

(a) Find the intervals where f(x) is increasing and where f(x) is decreasing.

(b) Find and classify any local maximum/minimum of f(x).

(c) Find the absolute maximum/minimum of f(x) on the interval [-1, 1].

2. Find f''(x) where

(15 pts.)

$$f(x) = \ln\left(\frac{1}{x}\right).$$

3. Use the linearization of the function $f(x) = \sqrt{x}$ at x = 9 to estimate $\sqrt{11}$. (15 pts.)

4. Find the indefinite integral, do not forget to add an arbitrary constant C. (5 pts. each)

(a)
$$\int (x^3 - 2x + 1) dx$$

(b)
$$\int \frac{2}{x^2} dx$$

5. Calculate the definite integral. Simplify your answer for full credit. (5 pts. each)

(a)
$$\int_0^{\pi/2} \sin(x) \, dx$$

(b)
$$\int_{1}^{e} \frac{1}{x} dx$$

6. A rectangle has its base on the x-axis and its upper two vertices on the parabola $y = 12-x^2$. What is the largest area the rectangle can have, and what are its dimensions? (10 pts.)

7. Assume that $2x^2 + 3y = 12$ and dy/dt = -2 when x = -1. Find dx/dt. (10 pts.)