Instructor: Sal Barone

Name: $\qquad$

GT username: $\qquad$

1. No books or notes are allowed.
2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic devices are not allowed.
3. Show all work and fully justify your answer to receive full credit.
4. Please BOX your answers.
5. Good luck!

| Page | Max. Possible | Points |
| :---: | :---: | :---: |
| 1 | 30 |  |
| 2 | 30 |  |
| 3 | 20 |  |
| 4 | 20 |  |
| Total | 100 |  |

1. During an experiment the velocity of a particle at time $t$ is given by

$$
v(t)=\frac{3 t}{\left(1+t^{2}\right)^{2}}
$$

for $t>0$. How far has the particle travelled in the first 2 seconds of the experiment?
2. Solve the separable differential equation.
(15 pts.)

$$
\frac{d y}{d x}=x^{2} \sqrt{y}, \quad y>0 .
$$

3. Find the value of the definite intergral. Hint: try integration by parts.
(15 pts.)

$$
\int_{1}^{e} x^{3} \ln (x) d x
$$

4. Find the area bounded by the two curves $y=x^{3}-2 x^{2}+1$ and $y=3 x+1$.
5. Integrate using any method.
(10 pts. each)
(a) $\int \tan (3 x) d x$
(b) $\int\left(4 x-3+\sec ^{2}(x)\right) d x$
6. Find the value.
(10 pts. each)
7. $\int_{0}^{\pi / 4} \sec (x) d x$
8. $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$
