# Math 1501 Calc I Summer 2015 QUP SOUP w/ GTcourses 

Instructor: Sal Barone

School of Mathematics
Georgia Tech

May 22, 2015
(updated May 22, 2015)

## $\S 3.3$ \& $\S 3.5$ : DIFFERENTIATION RULES

Covered sections: $\S 3.3$ \& $\S 3.5$
Exam 1 (Ch. 1 - Ch.3) Thursday, May 28

## §3.3 \& §3.5: DIFFERENTIATION RULES

Many symbols are used to notate the derivative of $y=f(x)$ with respect to $x$ :

$$
f^{\prime}=y^{\prime}=\frac{d}{d x} f=\frac{d f}{d x}=\frac{d y}{d x}
$$

## §3.3 \& §3.5: DIFFERENTIATION RULES

Many symbols are used to notate the derivative of $y=f(x)$ with respect to $x$ :

$$
f^{\prime}=y^{\prime}=\frac{d}{d x} f=\frac{d f}{d x}=\frac{d y}{d x}
$$

Remember the derivative $f^{\prime}(x)$ is:

- the slope of the tangent line of $y=f(x)$ at $x$,


## §3.3 \& §3.5: DIFFERENTIATION RULES

Many symbols are used to notate the derivative of $y=f(x)$ with respect to $x$ :

$$
f^{\prime}=y^{\prime}=\frac{d}{d x} f=\frac{d f}{d x}=\frac{d y}{d x}
$$

Remember the derivative $f^{\prime}(x)$ is:

- the slope of the tangent line of $y=f(x)$ at $x$,
- the instantaneous rate of change of $f(x)$ at $x$,


## §3.3 \& §3.5: DIFFERENTIATION RULES

Many symbols are used to notate the derivative of $y=f(x)$ with respect to $x$ :

$$
f^{\prime}=y^{\prime}=\frac{d}{d x} f=\frac{d f}{d x}=\frac{d y}{d x}
$$

Remember the derivative $f^{\prime}(x)$ is:

- the slope of the tangent line of $y=f(x)$ at $x$,
- the instantaneous rate of change of $f(x)$ at $x$,
- defined as the limit of the difference quotient of $f(x)$ near $x$.


## §3.3 \& §3.5: DIFFERENTIATION RULES

A differentiation rule is a rule that you can use to find $f^{\prime}$.
Rule: (Power rule)
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for any $n$.

## $\S 3.3$ \& $\S 3.5$ : DIFFERENTIATION RULES

A differentiation rule is a rule that you can use to find $f^{\prime}$.
Rule: (Power rule)
$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ for any $n$.
Rule: (Constant multiple \& Sum rules)

$$
\frac{d}{d x}(c f)=c \frac{d f}{d x} \quad \frac{d}{d x}(f+g)=\frac{d f}{d x}+\frac{d g}{d x},
$$

for any constant $c$ and functions $f(x), g(x)$.

## $\S 3.3$ \& $\S 3.5$ : DIFFERENTIATION RULES

Rule: (Exponential function)
$\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ and $\quad \frac{d}{d x}\left(e^{k x}\right)=k e^{k x}$.

## $\S 3.3$ \& $\S 3.5$ : DIFFERENTIATION RULES

Rule: (Exponential function)
$\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ and $\quad \frac{d}{d x}\left(e^{k x}\right)=k e^{k x}$.
Rule: (Product rule)

$$
\frac{d}{d x}(u v)=\frac{d u}{d x} v+u \frac{d v}{d x}
$$

for any functions $u(x)$ and $v(x)$.

## §3.3 \& §3.5: DIFFERENTIATION RULES

Rule: (Exponential function)
$\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ and $\quad \frac{d}{d x}\left(e^{k x}\right)=k e^{k x}$.
Rule: (Product rule)

$$
\frac{d}{d x}(u v)=\frac{d u}{d x} v+u \frac{d v}{d x}
$$

for any functions $u(x)$ and $v(x)$.
Rule: (Quotient rule)

$$
\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
$$

for any functions $u(x)$ and $v(x)$.

## §3.3 \& §3.5: DIFFERENTIATION RULES

Definition
The derivative of the derivative of $f$ is called the second derivative and denoted $f^{\prime \prime}$. The $n$-th derivative of $f$ is the function obtained by taking the derivative of $f$-times, and denoted $f^{(n)}$ if $n>3$.

$$
f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}, f^{(4)}, \ldots, f^{(n)}, \ldots
$$

## §3.3 \& §3.5: DIFFERENTIATION RULES

The derivatives of trig functions:

$$
\begin{array}{ll}
(\sin \theta)^{\prime}=\cos (\theta) & (\csc \theta)^{\prime}=-\csc (\theta) \cot (\theta) \\
(\cos \theta)^{\prime}=-\sin (\theta) & (\sec \theta)^{\prime}=\sec (\theta) \tan (\theta) \\
(\tan \theta)^{\prime}=\sec ^{2}(\theta) & (\cot \theta)^{\prime}=-\csc ^{2}(\theta)
\end{array}
$$

## §3.4 \& §3.6: THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVECovered sections: $\S 3.4 \& \S 3.6$

## §3.4 \& §3.6: THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERecall: the derivative $f^{\prime}$ of $f(x)$ is the instantaneous rate of change of $f$ with respect to $x$.

## §3.4 \& §3.6: THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERecall: the derivative $f^{\prime}$ of $f(x)$ is the instantaneous rate of change of $f$ with respect to $x$.

In Physics:

- If $s(t)$ is the position of a body, then $s^{\prime}$ is the body's velocity.


## $\S 3.4 \& 3.6:$ THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERecall: the derivative $f^{\prime}$ of $f(x)$ is the instantaneous rate of change of $f$ with respect to $x$.

In Physics:

- If $s(t)$ is the position of a body, then $s^{\prime}$ is the body's velocity.
- If $v(t)$ is the velocity of a body, then $v^{\prime}$ is the body's acceleration.


## $\S 3.4 \& 3.6:$ THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERecall: the derivative $f^{\prime}$ of $f(x)$ is the instantaneous rate of change of $f$ with respect to $x$.

In Physics:

- If $s(t)$ is the position of a body, then $s^{\prime}$ is the body's velocity.
- If $v(t)$ is the velocity of a body, then $v^{\prime}$ is the body's acceleration.
- If $a(t)$ is the acceleration of a body, then $a^{\prime}$ is the body's jerk.


## §3.4 \& §3.6: THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERecall: the derivative $f^{\prime}$ of $f(x)$ is the instantaneous rate of change of $f$ with respect to $x$.

In Physics:

- If $s(t)$ is the position of a body, then $s^{\prime}$ is the body's velocity.
- If $v(t)$ is the velocity of a body, then $v^{\prime}$ is the body's acceleration.
- If $a(t)$ is the acceleration of a body, then $a^{\prime}$ is the body's jerk.

In Economics:

- If $c(x)$ is the cost to produce $x$ units of a product, then $c^{\prime}$ is the marginal cost of production.


## §3.4 \& §3.6: THE CHAIN RULE \& APPLICATIONS OF

 THE DERIVATIVERule: (The chain rule)
The derivative of $g \circ f(x)$ is

$$
f^{\prime}(x) \cdot g^{\prime}(f(x))
$$

or using alternate notation

$$
\frac{d f}{d x}(x) \cdot \frac{d g}{d x}(f(x))
$$

