Worksheet 1

1. Find the domain of the following functions:

$$
f(x)=\frac{1}{x-3} \quad g(x)=\frac{1}{\sqrt{x-3}} \quad h(x)=\frac{1}{\sqrt{x^{2}-3}}
$$

2. Consider the function

$$
f(x)= \begin{cases}2 & \text { if } x<-3 \\ 2 x+5 & \text { if }-3<x<2 \\ -0.25 x^{2}+10 & \text { if } x \geq 2\end{cases}
$$

Graph $y=f(x)$ and write the domain of $f(x)$ using both inequality notation and interval notation. Finally, find the range of $f(x)$ by examining the graph you drew.
3. What is the function

$$
f(x)=\left\{\begin{aligned}
-x & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}\right.
$$

better known as? Graph $y=f(x)$ and find the domain and range of this function. Does this function have an inverse f^{-1} whose domain is the range of f ? If not, what is happening that prevents the inverse from existing?
4. Find the inverse of $f(x)=x^{3}+1$. Find $f^{-1}(10)$ and $f^{-1}(-10)$. What are the domain and range of f ? f^{-1} ?
5. Evaluate $\cos (\pi / 12)$ using the formula $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$.
6. Use the half-angle formula to evaluate $\cos ^{2}(\pi / 8)$.
7. Suppose $\sin (x)=3 / 5$ and $x \in\left[\frac{-\pi}{2}, 0\right]$. Find $\cos (x)$ and $\tan (x)$.
8. Suppose f and g are functions such that

$$
\begin{array}{ll}
f(0)=1 & g(0)=2 \\
f(1)=3 & g(1)=0 \\
f(2)=4 & g(3)=-2
\end{array}
$$

Find $f \circ g(0)$ and $g \circ f(0)$.

