1. Integrate using any method from class.
(a) $\int_{\text {1BP Box }} 5 x \sec ^{2}(3 x) d x=\frac{5 x}{3} \tan (3 x)-\int \frac{5}{3} \tan (3 x) d x$

$$
\begin{array}{ll}
u=5 x & d v=\sec ^{2}(3 x) d x \\
d u=5 d x & v=\frac{1}{3} \tan (3 x)
\end{array}=\frac{5 x}{3} \tan (3 x)-\frac{5}{9} \ln (\sec (3 x))+C
$$

$$
\begin{aligned}
& \text { (b) } \int \frac{x^{2}}{\left(x^{2}+9\right)^{3 / 2}} d x=\int \frac{9 \tan ^{2} \theta}{\left(9 \tan ^{2} \theta+9\right)^{3 / 2}} \cdot 3 \sec ^{2} \theta d \theta \\
& \begin{aligned}
X & =3 \tan \theta \\
d x & =3 \sec ^{2} \theta d \theta=\int \frac{27 \tan ^{2} \theta \sec ^{2} \theta}{\left(9 \sec ^{2} \theta\right)^{3 / 2}} d \theta=\int \frac{27 \operatorname{tin}^{2} \theta \sec ^{2} \theta}{27 \sec ^{3} \theta} d x \\
& =\int \frac{\tan ^{2} \theta}{\sec \theta} d \theta=\int \frac{\sec ^{2} \theta-1}{\sec \theta} d \theta=\int\left(\sec \theta-\frac{1}{\sec \theta)} d \theta\right. \\
& =\int \ln (\sec \theta+\tan \theta)-\sin \theta+C \\
& =\ln \left(\frac{\sqrt{x^{2}+9}}{3}+\frac{x}{3}\right)-\frac{x}{\sqrt{x^{2}+9}}+C
\end{aligned}
\end{aligned}
$$

2. Integrate using any method from class.

$$
\begin{aligned}
& \text { 2. Integrate using any method from } \frac{3 x+8}{x^{3}+x} d x=\int \frac{3 x+8}{x\left(x^{2}+1\right)} d x=\int \frac{A x+B}{x^{2}+1}+\frac{C}{x} d x \\
& \left.\begin{array}{l}
(A x+B) x+C\left(x^{2}+1\right)=3 x+8 \\
A+C) x^{2}+B x+C=3 x+8
\end{array} \begin{array}{l}
\left.\begin{array}{l}
A+C=0 \\
B=3 \\
C=8
\end{array}\right\} \Rightarrow \begin{array}{l}
A=-8 \\
B=3 \\
C=8
\end{array} \\
=\int\left(\frac{-8 x+3}{x^{2}+1}+\frac{8}{x}\right) d x \\
x^{2}+1 \\
x^{2}+1
\end{array}+\frac{8}{x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int \sin ^{4}(x) \cos ^{3}(x) d x=\int \sin ^{4}(x) \cos ^{2}(x) \cdot \cos (x) d x \\
& =\int \sin ^{4} x\left(1-\sin ^{2} x\right) \cos x d x=\int u^{4}\left(1-u^{2}\right) d u \\
& =\int u^{4}-u^{6} d u=\frac{1}{5} u^{5}-\frac{1}{7} u^{7}+C \\
& =\frac{1}{5} \sin ^{5} x-\frac{1}{7} \sin ^{7} x+C
\end{aligned}
$$

3. Either evaluate the integral or show that it diverges.

$$
\left.\left.\begin{array}{l}
\int_{1}^{\infty} \frac{1-\ln \left(x^{2}\right)}{x^{2}} d x \\
=\int_{1}^{\infty} \frac{1-2 \ln x}{x^{2}} d x=\int_{1}^{\infty} \frac{1}{x^{2}}-2 \int_{1}^{\infty} \frac{\ln x}{x^{2}} d x \\
=\left.\frac{-1}{x}\right|_{1} ^{\infty}-2 \int_{1}^{u=\ln x} \begin{array}{c}
u=x \\
d u=\frac{1}{x} 2 x \\
x
\end{array} \ln x=\frac{-1}{x}
\end{array}\right|_{1} ^{\infty}-\int_{1}^{\infty} \frac{-1}{x} \cdot \frac{1}{x} d x\right)-2\left((0-0)-\left(\left.\frac{-1}{x}\right|_{1} ^{\infty}\right)\right)
$$

Comparison test ok to CHECK but still need to evaluate!
(*)

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{1-\ln \left(x^{2}\right)}{x^{2}} d x \int_{1}^{\infty} \frac{1}{x^{2}} d x \\
&=\left.\frac{-1}{x}\right|_{1} ^{\infty}=0-(-1)=1 \\
& \text { So } \underbrace{\infty}_{1} 1-\ln x^{2} \leq 1 \\
& \frac{O R}{6} \text { converses }
\end{aligned}
$$

conclude that (A) converges by divect comparison.
4. Evaluate the limit.

$$
\lim _{x \rightarrow 0} \frac{x \tan ^{-1}(x)}{x^{2}-\cos x}=\mathbf{0}
$$

5. For what values of p does the integral $\int_{6}^{\infty} \frac{1}{x(\ln x)^{p}} d x$ converge?

$$
=\int_{\ln 6}^{\infty} \frac{1}{u^{e}} d u \quad \text { converges if } p>1
$$

$\begin{aligned} & \text { Bonus: }\left(5 \text { pts.) Evaluate } \int \sec ^{3}(x) d x \text {. }\right. \\ & 16 p-\text { 00.x }\end{aligned}=\tan x \sec x-\int \tan x \cdot \sec x \tan x d x$

$$
\begin{array}{ll}
\begin{array}{ll}
u=\sec x & d v=\sec ^{2} x d x \\
d u=\sec 3 \tan x & v=\tan x
\end{array}=\tan x \sec x-\int \tan ^{2} x \sec x d x \\
=\tan x \sec x-\int\left(\sec ^{2} x-1\right) \sec x d x
\end{array}
$$

$$
\begin{aligned}
(\mathbb{E})=\| & =\tan x \sec x-\int \sec ^{3} x d x+\int \sec x d \\
2 \theta=u & =\tan x \sec x-\ln (\sec x+\tan x)-\int \sec ^{3} x .
\end{aligned}
$$

$$
\text { So } \int \sec ^{3} x d x=\frac{1}{2} \tan x \sec x+\frac{1}{2} \ln (\sec x+\tan x)+C
$$

