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GT ID:

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the
ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the
Georgia Tech Community.

Sign Your Name:

This exam contains 5 problems. Check to see if any pages are missing. Enter all requested infor-
mation on the top of this page.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

• This exam is double-sided.

• Organize your work, in a reasonably neat and
coherent way, in the space provided. Work scat-
tered all over the page without a clear ordering
will receive very little credit.

• Mysterious or unsupported answers will not
receive full credit. A correct answer, unsup-
ported by calculations, explanation, or algebraic
work will receive no credit; an incorrect answer
supported by substantially correct calculations and
explanations might still receive partial credit.

• Please circle or box in your final answer.

• If you need extra space, you may use the back side
of this cover page.

Problem Points Score

1 18

2 10

3 15

4 27

5 30

Total: 100



SCRATCH WORK
If you want work on this page to be graded, please make a note on the corresponding problem.
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1. Answer the following questions given that

an =
32n

8n−1
and bn =

5n

8n−1
.

(a) (6 points) Evaluate
∑∞

n=1 an, or explain why the series diverges.
Grading Rubric:

• (1 point) Simplify the expression for an:

∞∑
n=1

32n

8n−1
=
∞∑

n=1

9n

8n−1

• (2 points) Rewrite as a series in standard geometric form:

= 8
∞∑

n=1

(
9
8

)n

• (2 point) Note that this series DIVERGES.
• (1 point) Reason for divergence is because the series is geometric with r = 9

8 > 1.

(b) (6 points) Evaluate
∑∞

n=1 bn, or explain why the series diverges.

• (2 points) Rewrite in standard form.

∞∑
n=1

5n

8n−1
= 8

∞∑
n=1

(
5
8

)n

• (2 point) Use the formula for a geometric series and (1 point) multiply by the first
term since n starts at 1. (1 point) for the final answer.

= 8 · 5
8
· 1

1− 5/8
= 8 · 5

8
· 8

3
=

40
3
.

(c) (6 points) Does
∑∞

n=1
bn
an

converge? If so, find the sum. If not, explain why the series
diverges.
Grading Rubric:

• (3 points) Divide the terms and simplify to standard form.

∞∑
n=1

5n

8n−1
· 8n−1

32n
=
∞∑

n=1

(
5
9

)n

• (1 point) Use the standard formula for geometric series and (1 point) multiply by the
first term. (1 point) for final answer.

=
5
9
· 1

1− 5/9
=

5
9
· 9

4
=

5
4
.
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2. True or False? Determine if each statement below is always true or sometimes false. Circle
your answer to each statement.

(a) (2 points) TRUE The integral
∫
x3
√
x2 − 1 dx can be evaluated by trigonometric

substitution by setting x = sec θ.

(b) (2 points) FALSE The integral
∫

dx
(x2+1)(x2+4)

cannot be evaluated using the method
of partial fractions.

(c) (2 points) FALSE If {an} diverges, then limn→∞ an =∞.

(d) (2 points) TRUE If a sequence {an} does not have an upper bound, then {an} diverges.

(e) (2 points) FALSE The integral
∫ 1
−1

1
x5 dx can be evaluated using the Fundamental

Theorem of Calculus.



3. (15 points) Evaluate the improper integral∫ ∞
5

10x
(x2 − 9)3/2

dx.

Grading Rubric:

• (2 points) Rewrite the integral as a limit.∫ ∞
5

10x
(x2 − 9)3/2

dx = lim
b→∞

∫ b

5

10x
(x2 − 9)3/2

dx

• (3 points) Find u and du, sub into equation. Either change the limits of integration or
leave them off.

= 5 lim
b→∞

∫ b2−9

16
u−3/2du [u = x2 − 9, du = 2xdx]

• (4 points) Find the anti-derivative.

= 5 lim
b→∞

[
−2u−1/2

]b2−9

16

• (2 points) Plug in values.

= −10 lim
b→∞

[
(b2 − 9)−1/2 − 16−1/2

]
• (2 points) Evaluate the limits.

= −10
[
0− 1

4

]
• (2 points) Final answer, ok if not fully simplified: = 5

2 .
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4. Let

an =
(

n

n+ 5

)n

.

(a) (15 points) Evaluate limn→∞ an.
Grading Rubric:

• (5 points) Rewrite the equation, or take the natural log of the original function.

lim
n→∞

(
n

n+ 5

)n

= lim
n→∞

(
1

n+5
n

)n

• (5 points) Rewrite again in terms of the formula we know, or use L’Hopital’s rule if
you started by taking natural logs.

= lim
n→∞

(
1

1 + 5
n

)n

= lim
n→∞

(
1(

1 + 5
n

)n
)

• (3 points) Evaluate this limit, and (2 points) simplify, or if you used L’Hopital’s rule,
take e to the limit.

==
1
e5
.

(b) (6 points) Does the sequence {an} converge or diverge? Explain your answer.
(3 points) Yes, the sequence CONVERGES because (3 points) there is finite limit of e−5

as n→∞.

(c) (6 points) Does the series
∑∞

n=1 an converge or diverge? Explain your answer.
(3 points) No, the series DIVERGES because (3 points) the limit of the terms is e−5,
which is not equal to 0.



VERSION A 1:55 Name:

5. Evaluate each integral using any technique we have learned.

(a) (15 points) ∫
x2 − 2x+ 2

(x2 + 4)(x+ 1)
dx

• (2 points) Set up equation

x2 − 2x+ 2
(x2 + 4)(x+ 1)

=
Ax+B

x2 + 4
+

C

x+ 1

• (1 points) Combining the right hand side:

x2 − 2x+ 2
(x2 + 4)(x+ 1)

=
(Ax+B)(x+ 1) + C(x2 + 4)

(x2 + 4)(x+ 1)

• (2 points) Collect common terms:

x2 − 2x+ 2
(x2 + 4)(x+ 1)

=
(A+ C)x2 + (A+B)x+B + 4C

(x2 + 1)(x− 2)

• (2 points) Set up the linear system:
A+ C = 1
A+B = −2
B + 4C = 2

• (3 points) Solve the linear system: A = 0, B = −2, C = 1.
• (4 points) Integrate and (1 point) ”+C”:∫ [

1
x+ 1

− 2
x2 + 4

]
dx = ln |x+ 1| − arctan

(x
2

)
+ C



(b) (15 points) ∫
5dx√

25x2 − 9

Grading Rubric:

• (2 points) Trig sub: let 5x = 3 sec θ, so x = 3
5 sec θ.

• (1 point) Find dx = 3
5 sec θ tan θdθ.

• (2 points) Note that
√

25x2 − 9 reduces to
√

9 sec2 θ − 9 = 3 tan θ.
• (1 point) Rewrite the integral:∫

5dx√
25x2 − 9

=
∫

5 · 3
5 sec θ tan θdθ

3 tan θ

• (2 points) Reduce the integral:

=
∫

sec θdθ

• (2 points) Integrate and (1 point) for ”+C”:

= ln | sec θ + tan θ|+ C

• (4 points) Rewrite as a function of x:

= ln

∣∣∣∣∣5x3 +
√

25x2 − 9
3

∣∣∣∣∣+ C.


