Math 1552 1:55 Version A Name (Print):
Spring 2019
Midterm 2
Canvas email: \qquad
March 8, 2019
Time Limit: 50 Minutes
TA: \qquad
GT ID:

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Community.

Sign Your Name: \qquad
This exam contains 5 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

You may not use your books, notes, or any calculator on this exam.
You are required to show your work on each problem on this exam. The following rules apply:

- This exam is double-sided.

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Mysterious or unsupported answers will not receive full credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations might still receive partial credit.
- Please circle or box in your final answer.

Problem	Points	Score
1	18	
2	10	
3	15	
4	27	
5	30	
Total:	100	

- If you need extra space, you may use the back side of this cover page.

SCRATCH WORK

If you want work on this page to be graded, please make a note on the corresponding problem.
\qquad

1. Answer the following questions given that

$$
a_{n}=\frac{3^{2 n}}{8^{n-1}} \quad \text { and } \quad b_{n}=\frac{5^{n}}{8^{n-1}} .
$$

(a) (6 points) Evaluate $\sum_{n=1}^{\infty} a_{n}$, or explain why the series diverges.

Grading Rubric:

- (1 point) Simplify the expression for a_{n} :

$$
\sum_{n=1}^{\infty} \frac{3^{2 n}}{8^{n-1}}=\sum_{n=1}^{\infty} \frac{9^{n}}{8^{n-1}}
$$

- (2 points) Rewrite as a series in standard geometric form:

$$
=8 \sum_{n=1}^{\infty}\left(\frac{9}{8}\right)^{n}
$$

- (2 point) Note that this series DIVERGES.
- (1 point) Reason for divergence is because the series is geometric with $r=\frac{9}{8}>1$.
(b) (6 points) Evaluate $\sum_{n=1}^{\infty} b_{n}$, or explain why the series diverges.
- (2 points) Rewrite in standard form.

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{8^{n-1}}=8 \sum_{n=1}^{\infty}\left(\frac{5}{8}\right)^{n}
$$

- (2 point) Use the formula for a geometric series and (1 point) multiply by the first term since n starts at 1. (1 point) for the final answer.

$$
=8 \cdot \frac{5}{8} \cdot \frac{1}{1-5 / 8}=8 \cdot \frac{5}{8} \cdot \frac{8}{3}=\frac{40}{3} .
$$

(c) (6 points) Does $\sum_{n=1}^{\infty} \frac{b_{n}}{a_{n}}$ converge? If so, find the sum. If not, explain why the series diverges.
Grading Rubric:

- (3 points) Divide the terms and simplify to standard form.

$$
\sum_{n=1}^{\infty} \frac{5^{n}}{8^{n-1}} \cdot \frac{8^{n-1}}{3^{2 n}}=\sum_{n=1}^{\infty}\left(\frac{5}{9}\right)^{n}
$$

- (1 point) Use the standard formula for geometric series and (1 point) multiply by the first term. (1 point) for final answer.

$$
=\frac{5}{9} \cdot \frac{1}{1-5 / 9}=\frac{5}{9} \cdot \frac{9}{4}=\frac{5}{4} .
$$

\qquad
2. True or False? Determine if each statement below is always true or sometimes false. Circle your answer to each statement.
(a) (2 points) TRUE The integral $\int x^{3} \sqrt{x^{2}-1} d x$ can be evaluated by trigonometric substitution by setting $x=\sec \theta$.
(b) (2 points) FALSE The integral $\int \frac{d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ cannot be evaluated using the method of partial fractions.
(c) (2 points) FALSE If $\left\{a_{n}\right\}$ diverges, then $\lim _{n \rightarrow \infty} a_{n}=\infty$.
(d) (2 points) TRUE If a sequence $\left\{a_{n}\right\}$ does not have an upper bound, then $\left\{a_{n}\right\}$ diverges.
(e) (2 points) FALSE The integral $\int_{-1}^{1} \frac{1}{x^{5}} d x$ can be evaluated using the Fundamental Theorem of Calculus.
3. (15 points) Evaluate the improper integral

$$
\int_{5}^{\infty} \frac{10 x}{\left(x^{2}-9\right)^{3 / 2}} d x
$$

Grading Rubric:

- (2 points) Rewrite the integral as a limit.

$$
\int_{5}^{\infty} \frac{10 x}{\left(x^{2}-9\right)^{3 / 2}} d x=\lim _{b \rightarrow \infty} \int_{5}^{b} \frac{10 x}{\left(x^{2}-9\right)^{3 / 2}} d x
$$

- (3 points) Find u and $d u$, sub into equation. Either change the limits of integration or leave them off.

$$
=5 \lim _{b \rightarrow \infty} \int_{16}^{b^{2}-9} u^{-3 / 2} d u \quad\left[u=x^{2}-9, d u=2 x d x\right]
$$

- (4 points) Find the anti-derivative.

$$
=5 \lim _{b \rightarrow \infty}\left[-2 u^{-1 / 2}\right]_{16}^{b^{2}-9}
$$

- (2 points) Plug in values.

$$
=-10 \lim _{b \rightarrow \infty}\left[\left(b^{2}-9\right)^{-1 / 2}-16^{-1 / 2}\right]
$$

- (2 points) Evaluate the limits.

$$
=-10\left[0-\frac{1}{4}\right]
$$

- (2 points) Final answer, ok if not fully simplified: $=\frac{5}{2}$.
\qquad

4. Let

$$
a_{n}=\left(\frac{n}{n+5}\right)^{n} .
$$

(a) (15 points) Evaluate $\lim _{n \rightarrow \infty} a_{n}$.

Grading Rubric:

- (5 points) Rewrite the equation, or take the natural \log of the original function.

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+5}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{n+5}{n}}\right)^{n}
$$

- (5 points) Rewrite again in terms of the formula we know, or use L'Hopital's rule if you started by taking natural logs.

$$
=\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{5}{n}}\right)^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{\left(1+\frac{5}{n}\right)^{n}}\right)
$$

- (3 points) Evaluate this limit, and (2 points) simplify, or if you used L'Hopital's rule, take e to the limit.

$$
==\frac{1}{e^{5}} .
$$

(b) (6 points) Does the sequence $\left\{a_{n}\right\}$ converge or diverge? Explain your answer. (3 points) Yes, the sequence CONVERGES because (3 points) there is finite limit of e^{-5} as $n \rightarrow \infty$.
(c) (6 points) Does the series $\sum_{n=1}^{\infty} a_{n}$ converge or diverge? Explain your answer. (3 points) No, the series DIVERGES because (3 points) the limit of the terms is e^{-5}, which is not equal to 0 .
\qquad
5. Evaluate each integral using any technique we have learned.
(a) (15 points)

$$
\int \frac{x^{2}-2 x+2}{\left(x^{2}+4\right)(x+1)} d x
$$

- (2 points) Set up equation

$$
\frac{x^{2}-2 x+2}{\left(x^{2}+4\right)(x+1)}=\frac{A x+B}{x^{2}+4}+\frac{C}{x+1}
$$

- (1 points) Combining the right hand side:

$$
\frac{x^{2}-2 x+2}{\left(x^{2}+4\right)(x+1)}=\frac{(A x+B)(x+1)+C\left(x^{2}+4\right)}{\left(x^{2}+4\right)(x+1)}
$$

- (2 points) Collect common terms:

$$
\frac{x^{2}-2 x+2}{\left(x^{2}+4\right)(x+1)}=\frac{(A+C) x^{2}+(A+B) x+B+4 C}{\left(x^{2}+1\right)(x-2)}
$$

- (2 points) Set up the linear system:

$$
\left\{\begin{array}{l}
A+C=1 \\
A+B=-2 \\
B+4 C=2
\end{array}\right.
$$

- (3 points) Solve the linear system: $A=0, B=-2, C=1$.
- (4 points) Integrate and (1 point) " +C ":

$$
\int\left[\frac{1}{x+1}-\frac{2}{x^{2}+4}\right] d x=\ln |x+1|-\arctan \left(\frac{x}{2}\right)+C
$$

(b) (15 points)

$$
\int \frac{5 d x}{\sqrt{25 x^{2}-9}}
$$

Grading Rubric:

- (2 points) Trig sub: let $5 x=3 \sec \theta$, so $x=\frac{3}{5} \sec \theta$.
- (1 point) Find $d x=\frac{3}{5} \sec \theta \tan \theta d \theta$.
- (2 points) Note that $\sqrt{25 x^{2}-9}$ reduces to $\sqrt{9 \sec ^{2} \theta-9}=3 \tan \theta$.
- (1 point) Rewrite the integral:

$$
\int \frac{5 d x}{\sqrt{25 x^{2}-9}}=\int \frac{5 \cdot \frac{3}{5} \sec \theta \tan \theta d \theta}{3 \tan \theta}
$$

- (2 points) Reduce the integral:

$$
=\int \sec \theta d \theta
$$

- (2 points) Integrate and (1 point) for " +C ":

$$
=\ln |\sec \theta+\tan \theta|+C
$$

- (4 points) Rewrite as a function of x :

$$
=\ln \left|\frac{5 x}{3}+\frac{\sqrt{25 x^{2}-9}}{3}\right|+C
$$

