

By signing here, you agree to abide by the Georgia Tech Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech Commun部y.

Sign Your Name:

Student Instructions

- Show your work and justify your answers for all questions unless stated otherwise.
- Organize your work in a reasonably neat and coherent way.
- Simplify your answers unless explicitly stated otherwise.
- Fill in circles completely. Do not use check marks, X's, or any other marks.
- Place a box around your final answer for full credit.
- Calculators, notes, cell phones, books are not allowed.
- Use dark and clear writing: your exam will be scanned into a digital system.
- Exam pages are double sided. Be sure to complete both sides.
- Leave a 1 inch border around the edges of exams.
- The last page is for scratch work. Please use it if you need extra space.
- This exam has 5 pages of questions.

1. (2 points) Suppose that $f(x)$ is an increasing function which is non-negative and not constant on the interval $[3,5]$ and $\int_{3}^{5} f(x) d x=A$. Which of the following statements are true? You do not have to show work on this problem.
true falseIf we estimate A using the upper-sum method with $n=4$ rectangles, then we will get a value larger than A.If we estimate A using the right-endpoint method with $n=4$ rectangles, then we will get a value smaller than A.
2. (3 points) Suppose $f(x)$ is an even function and $g(x)$ is an odd function. If $\int_{-3}^{0} f(x) d x=6$, $\int_{2}^{3} f(x) d x=2$, and $\int_{-2}^{0} g(x) d x=3$, find $A=\int_{0}^{2} f(x)-g(x) d x$.

$$
\begin{aligned}
& \int_{0}^{2} f(x)-g(x) d x \\
& =\int_{0}^{2} f(x) d x-\int_{\int}^{2} g(x) d x \cdot g d x \\
& =\left[\int_{0}^{3}+(x) b x-\int_{2}^{3} f(x) \delta x\right]+\int_{-2}^{0} g(x) d x=[6-2]+3=7
\end{aligned}
$$

3. (3 points) Find the lower-sum Riemann sum estimate for the area between the x-axis and the function $f(x)=x^{2}+1$ over the interval $[-1,3]$ using $n=4$ rectangles. area \approx

$$
1+1+2+5=9
$$

4. (4 points) Compute $F^{\prime}(x)$ using the fundamental theorem of calculus.

$$
\begin{array}{rlrl}
F(x) & =G\left(x^{2}\right) & & G^{\prime}(x)=\frac{x^{3}}{1+x^{2}} \\
\Rightarrow F^{\prime}(x) & =G^{\prime}\left(x^{2}\right) \times\left(x^{2}\right)^{\prime} \\
& =\frac{x^{6}}{1+x^{2}} \cdot 2 x=\frac{2 x^{7}}{1+x^{2}}
\end{array}
$$

5. (4 points) Find the general antiderivative.

$$
\int \frac{3}{9+x^{2}} d x=\int_{\frac{9}{3}\left(1+\left(\frac{x}{3}\right)^{2}\right)}^{\frac{3}{\operatorname{iive}}} d x
$$

U-Say Box

$$
=\int \frac{1}{1+\left(\frac{x}{3}\right)^{2}} \cdot \frac{1}{3} d x
$$

6. (24 points) Integrate.

(8) $\int_{c}^{e} \frac{1}{2(\tan \pi)^{4}}{ }^{t x}=\int_{*}^{*} \frac{1}{u^{2}} d u=-\left.\frac{1}{u}\right|_{*} ^{*}$

$=\left.\frac{-1}{\ln x}\right|_{e} ^{z e}=\frac{-1}{\ln (x)}-\frac{-1}{\ln e}$

$$
=\frac{-1}{2}+\frac{1}{1}=1-\frac{1}{2}=\frac{1}{2}
$$

 $=\int \frac{1}{\sqrt{u}} d u$
$=2 \sqrt{u}+C$ $=2 \sqrt{x^{3}+1}+C$

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
\int \sin ^{3}(2 x) \cos ^{2}(2 x) d x & =\int \sin (2 x) \cdot \sin ^{2}(2 x) \cos ^{2}(2 x) d x \\
& =\int\left(1-\cos ^{2}(2 x)\right) \cos ^{2}(2 x) \sin (2 x) d x
\end{aligned} \\
& =\int\left(1-u^{2}\right) u^{2} \frac{-1}{2} d u \\
& =
\end{aligned}
$$

$u-s u y$ Box

$$
d u=-2 \sin 2 x d x
$$

(d) $\int 2 x \sec ^{2}(2 x) d x$

IB BOX

$$
\begin{array}{ll}
U=2 x & d v=\sec ^{2}(2 x) d x \\
d u=2 d x & v=\frac{1}{2} \tan (2 x)
\end{array}
$$

U-gub Box

$$
\begin{aligned}
& u=\cos 7 x \\
& d u=-2 \sin 2 x d x \\
& -\frac{1}{2} d u=\sin 2 x d x
\end{aligned}
$$

$$
\begin{aligned}
& =x \tan (2 x)-\int \tan (2 x) d x \\
& =x \tan (2 x)-\int \frac{\sin (2 x)}{\cos (2 x)} d x \\
& =x \tan (2 x)-\int \frac{1}{u} \cdot \frac{-1}{2} d u \\
& =x \tan (2 x)+\frac{1}{2} \ln |u|+C \\
& \left.=x \tan (2 x)+\frac{1}{2} \ln |\cos 2 x|+C \right\rvert\,
\end{aligned}
$$

7. (10 points) Suppose $f(x)=3 x+1$. Use a general Riemann Sum

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x & \Delta x=\frac{b-a}{n}=\frac{2-c-11}{n}=\frac{3}{n} \\
x \text { x) on the interval }[-1,2] & x_{x}=-1+k \Delta x=-1+\frac{3 k}{n}
\end{array}
$$

to evaluate the definite integral of $f(x)$ on the interval $[-1,2]$
(a) Find an expression for $R_{n}=\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ that does not involve sigma's.
(b) Find the exact value by taking the limit of the expression you found in part (a).

$$
\begin{aligned}
& \text { (a) } \\
& \text { Please box your answer for each part and clearly organize your work. } \\
& R_{n}=\sum_{k=1}^{n} f\left(x_{k}\right) d x=\sum_{k=1}^{n}\left(3 \cdot\left(-1+\frac{k \cdot 3}{n}\right)+1\right) \cdot \frac{3}{n} \\
& =\sum_{k=1}^{n}\left(\frac{3 k}{n}-2\right) \frac{3}{n}=\sum_{k=1}^{n} \frac{27 k}{n^{2}}-\frac{6}{n}=\frac{27}{n^{2}} \sum_{k=1}^{n} k-\frac{6}{4} \sum_{k=1}^{n} 1 \\
& =\frac{27}{n^{2}} \frac{n(n+1)}{2}-\frac{6}{n} \cdot k \\
& R_{n}=13.5 \frac{n(n+1)}{n^{2}}-6{ }^{\text {(a) }} \\
& \text { (b) } \lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} 13.5\left(\frac{n(n+1)}{n^{2}}\right)-6=13.5-6=(6.5
\end{aligned}
$$

