Math 1552: Integral Calculus

Review Problems for Test 1, Sections 4.8, 5.1-5.6, 8.2-8.3

1. Formula Recap: complete each of the following formulas.
(a) The general Riemann Sum is found using the formula:
(b) Some helpful summation formulas are:

$$
\begin{aligned}
& \sum_{i=1}^{n} c= \\
& \sum_{i=1}^{n} i= \\
& \sum_{i=1}^{n} i^{2}=
\end{aligned}
$$

(c) Properties of the definite integral:

$$
\begin{gathered}
\int_{a}^{a} f(x) d x= \\
\int_{b}^{a} f(x) d x= \\
\int_{a}^{b} c f(x) d x=
\end{gathered}
$$

(d) State the Fundamental Theorem of Calculus:
(e) Using the FTC:

$$
\frac{d}{d x}\left[\int_{a(x)}^{b(x)} f(t) d t\right]=
$$

(f) If F is an antiderivative of f, that means:
(g) If F is an antiderivative of f, then:

$$
\begin{aligned}
& \int f(g(x)) g^{\prime}(x) d x= \\
& \int_{a}^{b} f(g(x)) g^{\prime}(x) d x=
\end{aligned}
$$

(h) To find the area between two curves, use the following steps:
(h) Evaluate an integral using integration by parts if:

To choose the value of u, use the rule: \qquad
(i) To evaluate integrals with powers or products of trig functions, use the following trig identities to try to obtain a u-substitution:
2. Fill in the integration formulas below:

$$
\begin{gathered}
\int x^{n} d x, \quad(n \neq-1)= \\
\int \sin (a x) d x= \\
\int \cos (a x) d x=
\end{gathered}
$$

$$
\begin{gathered}
\int \sec ^{2}(a x) d x= \\
\int \sec (a x) \tan (a x) d x= \\
\int \csc (a x) \cot (a x) d x= \\
\int \csc ^{2}(a x) d x= \\
\int \frac{1}{1+(a x)^{2}} d x= \\
\int \frac{1}{\sqrt{1-(a x)^{2}}} d x= \\
\int \frac{1}{x} d x= \\
\int e^{a x} d x= \\
\int b^{a x} d x= \\
\int \tan x d x= \\
\int \sec x d x= \\
\int \csc x d x= \\
\int \cot x d x=
\end{gathered}
$$

1. True or False?
(a) If F and G are both antiderivatives of f, then $F=G$.
(b) The antiderivative of $\sec ^{2}(3 x)$ is $\frac{1}{3} \tan (3 x)$.
(c) The indefinite integral of a function f is the collection of all antiderivatives of f.
(d) We know how to find the antiderivative of $\cos \left(x^{2}\right)$, and it is $\sin \left(x^{2}\right)$.
(e) To find the upper sum U_{f} of a function f on $[a, b]$, after partitioning the interval into n pieces, evaluate f at the right-hand endpoint of each subinterval.
(f) When the interval $[a, b]$ is partitioned into n pieces, there are exactly n endpoints.
(g) A partition of the interval $[a, b]$ does not need to be evenly spaced in order to calculate a Riemann Sum.
(h) If f is positive and continuous on $[a, b]$, and A is the actual area bounded by $f, x=a$, $x=b$, and the x-axis, then $L_{f}<A<U_{f}$.
(i) We always set x_{i}^{*} to be the right-hand endpoint of the $i^{\text {th }}$ interval.
(j) $\sum_{i=1}^{n} i^{2}=\left(\frac{n(n+1)}{2}\right)^{2}$.
(k) If $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x$ represents the total area bounded by $f, x=a$, $x=b$, and the x-axis.
(l) If f is a continuous function, then the function $F(x)=\int_{a}^{x} f(t) d t$ is an anti-derivative of f.
(m) If F is an anti-derivative of f, then $\int_{a}^{b} f(x) d x$ represents the slope of the secant line of $\mathrm{F}(\mathrm{x})$ on the interval $[a, b]$.
(n) $\frac{d}{d x}\left[\int_{a}^{b} f(t) d t\right]=f(x)$.
(o) Given that f is continuous on $[a, b]$ and $F^{\prime}(x)=f(x)$, then $F(b)-F(a)$ represents the net area bounded by the graph of $y=f(x)$, the lines $x=a, x=b$, and the x-axis.
(p) $\int f(x) g(x) d x=\left(\int f(x) d x\right) \cdot\left(\int g(x) d x\right)$
(q) To evaluate $\int \sin ^{-1}(x) d x$ by parts, choose $u=\sin ^{-1}(x)$ and $d v=d x$.
(r) To evaluate $\int x \ln (x) d x$ by parts, choose $u=x$ and $d v=\ln (x) d x$.
(s) To evaluate $\int \cot (x) d x$, integrate by substitution choosing $u=\sin (x)$.
2. Evaluate the following indefinite integrals.
(a) $\int\left(\sqrt{x}-\frac{1}{x}\right)^{2} d x$
(b) $\int\left[4^{-2 x}+e^{-5 x}\right] d x$
(c) $\int\left(\frac{e^{\sqrt{2}}+x^{\sqrt{2}}}{\sqrt{x}}\right) d x$
(d) $\int\left(\frac{2}{3 x}-\frac{1}{\sqrt{4-x^{2}}}\right) d x$
3. A particle travels with a velocity given by $v(t)=-\frac{1}{3} t^{2}+4 t+2$, where position is measured in meters and time in seconds.
(a) Find the acceleration of the particle when $t=1$ second.
(b) If the initial position is 4 m , find the position of the particle at $t=1$ second.
4. (Applying the Riemann Sum) You are driving when all of a sudden, you see traffic stopped in front of you. You slam the brakes to come to a stop. While your brakes are applied, the velocity of the car is measured, and you obtain the following measurements:

Time since applying breaks (sec)	0	1	2	3	4	5
Velocity of car (in ft/sec)	88	60	40	25	10	0

(a) Plot the points on a curve of velocity vs. time.
(b) Using the points given, determine upper and lower bounds for the total distance traveled before the car came to a stop.
5. Estimate the area under the graph of $f(x)=10-x^{2}$ between the lines $x=-3$ and $x=2$ using $n=5$ equally spaced subintervals, by finding:
(a) the upper sum, U_{f}.
(b) the lower sum, L_{f}.
6. (Applying the Definite Integral) A marketing company is trying a new campaign. The campaign lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$
C(t)=5 t-t^{2}
$$

where t is time in weeks and the number of customers is given in thousands.

Using the general form of the definite integral,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}^{*}\right)
$$

calculate the average number of customers gained during the three-week campaign.
7. Explain why the following property is true:

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Can you find an example where the inequality is strict?
8. Using the general form of the definite integral, $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$, evaluate:

$$
\int_{2}^{4}(x-1)^{2} d x
$$

9. Evaluate $\int_{0}^{2}|x-1| d x$ using integral properties from class. (HINT: draw a picture, and use geometry!)
10. Suppose that $f(x)$ is an even function such that $\int_{0}^{2} f(x) d x=5$ and $\int_{0}^{3} f(x) d x=8$.

Find the value of $\int_{-2}^{3} f(x) d x$.
11. Evaluate the integrals:
(a) $\int_{1}^{2} \frac{3 x-5}{x^{3}} d x$.
(b) $\int_{2}^{5}(2-x)(x-5) d x$.
(c) $\int_{\pi}^{\frac{7 \pi}{2}} \frac{1+\cos (2 t)}{2} d t$.
12. Find $F^{\prime}(2)$ for the function

$$
F(x)=\int_{\frac{8}{x}}^{x^{2}}\left(\frac{t}{1-\sqrt{t}}\right) d t
$$

13. (a) Given the function f below, evaluate $\int_{1}^{9} f(x) d x$.

$$
f(x)=\left\{\begin{array}{cc}
x^{2}+4, & x<4 \\
\sqrt{x}-x, & x \geq 4
\end{array}\right.
$$

(b) Would you get the same answer to part (a) if you evaluated $F(9)-F(1)$? What does this tell you about the FTC and continuity?
14. (a) Evaluate the expressions:

$$
\int_{0}^{1} x(1+x) d x, \quad\left(\int_{0}^{1} x d x \cdot \int_{0}^{1}(1+x) d x\right)
$$

(b) Looking at your answer in part (a), what, if anything, can you say in general about $\int(f(x) \cdot g(x)) d x ?$
15. For each integral below, determine if we can evaluate the integral using the method of u-substitution. If the answer is "yes", evaluate the integral.
(a) $\int \frac{1}{x^{2}} \sec \left(\frac{1}{x}\right) \tan \left(\frac{1}{x}\right) d x$
(b) $\int x \csc ^{2}(x) d x$
(c) $\int \frac{\sin 3 x-\cos 3 x}{\sin 3 x+\cos 3 x} d x$
(d) $\int \tan \left(x^{2}\right) d x$
16. Evaluate the following integrals using the method of substitution.
(a) $\int \frac{1}{\ln \left(x^{x}\right)} d x$
(b) $\int \frac{e^{2 x}}{\sqrt{4-3 e^{2 x}}} d x$
(c) $\int \frac{d x}{\sqrt{4-(x+3)^{2}}}$
17. Suppose that $y=f(x)$ and $y=g(x)$ are both continuous functions on the interval $[a, b]$. Determine if each statement below is always true or sometimes false.
(a) Suppose that $f(c)>g(c)$ for some number $c \in(a, b)$. Then the area bounded by f, g, $x=a$, and $x=b$ can be found by evaluating the integral $\int_{a}^{b}(f(x)-g(x)) d x$.
(b) If $\int_{a}^{b}(f(x)-g(x)) d x$ evaluates to -5 , then the area bounded by $f, g, x=a$, and $x=b$ is 5 .
(c) If $f(x)>g(x)$ for every $x \in[a, b]$, then $\int_{a}^{b}|f(x)-g(x)| d x=\int_{a}^{b}(f(x)-g(x)) d x$.
18. Find the area bounded by the region between the curves $f(x)=x^{3}+2 x^{2}$ and $g(x)=$ $x^{2}+2 x$.
19. Find the area bounded by the region enclosed by the three curves $y=x^{3}, y=-x$, and $y=-1$.
20. Find the area bounded by the curves $y=\cos x$ and $y=\sin (2 x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.
21. Find the area of the triangle with vertices at the points $(0,1),(3,4)$, and $(4,2)$. USE CALCULUS.
22. For each function below: (i) determine which method to use to evaluate the function (formula, u-substitution, or integration by parts, and (ii) evaluate the integral.
(a) $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x$
(b) $\int(\ln x)^{2} d x$
(c) $\int x^{2} e^{x^{3}} d x$
(d) $\int x^{3} e^{x^{2}} d x$
(e) $\int 4^{-x} d x$
(f) $\int x^{2} \cdot 4^{x} d x$
23. Determine if each integral below can be evaluated using a method we have learned so far (formula, u-substitution, integration by parts, or trig identities). If so, evaluate the integral. If not, explain why it cannot be evaluated.
(a) $\int x^{5} \ln (x) d x$
(b) $\int \sin ^{5}(2 x) \cos ^{3}(2 x) d x$
(c) $\int \cos ^{2}(3 x) d x$
(d) $\int \tan (x) \ln [\cos (x)] d x$
(e) $\int \sin \left(x^{2}\right) d x$
(f) $\int \tan ^{4}(x) d x$
(g) $\int e^{2 x} \sin (3 x) d x$

Additional Test Review Problems

24. True or false?
(a) When evaluating a definite integral using u-subsitution, different choices of u may lead to different final answers.
(b) Integration by Parts is a Product Rule in integral form.
(c) The goal of integration by parts is to go from an integral $\int f^{\prime}(x) g^{\prime}(x) d x$ that we can't evaluate to an integral $\int f(x) g(x) d x$ that we can evaluate.
(d) Definite integrals can not be evaluated by Integration by Parts.
(e) If f is a continuous, increasing function, then the right-hand Riemann sum method always overestimates the definite integral.
(f) Let f be a continuous function and $a v(f)$ be the average of f. Then $a v(f) \cdot(b-a)=$ $\int_{a}^{b} f(x) d x$.
(g) When finding the area between the curves $y=x^{3}-x$ and $y=x^{2}+x$ it suffices to find the value of the definite integral $\int_{-1}^{2}\left[\left(x^{3}-x\right)-\left(x^{2}+x\right)\right] d x$, and then take the absolute value of this value to get the right answer.
(h) To find the area between the curves $y=x^{3}-x$ and $y=x^{2}+x$, first set the equations equal and solve to find the intersection points $x=-1$ and $x=2$, plug in a test-point into the equations or graph the curves to determine top and bot, and then evaluate $\int_{-1}^{2}(\mathbf{t o p})-(\mathbf{b o t}) d x$.
(i) If $\int_{0}^{1} f(x) d x=9$ and $f(x) \geq 0$, then $\int_{0}^{1} \sqrt{f(x)} d x=3$.
25. Evaluate the following integrals.
(a) $\int_{0}^{\frac{\pi}{4}} \sec ^{2}(t) e^{1+\tan (t)} d t$
(b) $\int \sin ^{3}(x) \cos ^{3}(x) d x$
(c) $\int \frac{1}{\sqrt{4-9 w^{2}}} d w$
(d) $\int x \sin (x) \cos (x) d x$
(e) $\int \sec ^{4}(x) d x$
(f) $\int \ln (x+1) d x$
26. Suppose: $f(1)=2, f(4)=7, f^{\prime}(1)=5, f^{\prime}(4)=3$ and $f^{\prime \prime}(x)$ is continuous. Find the
value of:

$$
\int_{1}^{4} x f^{\prime \prime}(x) d x
$$

27. Consider the following limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(\pi \cdot \frac{i}{n}\right) \cdot \frac{\pi}{2 n}
$$

(a) Express the limit as a definite integral.
(b) Compute the definite integral from part (a).
28. Let $f(x)=3 x+4$.
(a) Estimate the area of the region between the graph of f, the lines $x=-1$ and $x=2$, and the x-axis using a upper sum with three rectangles of equal width.
(b) Find the actual area in part (a) by taking the limit of a general Riemann Sum using n equally spaced subintervals, and taking x_{i}^{*} as the right-hand endpoint of each interval.
29. Find the area bounded by the curves $y=\cos ^{2}(x)$ and $y=-\sin ^{2}(x)$, and the lines $x=0$ and $x=\pi$. (Hint: draw a picture in GeoGebra - an online graphing tool.)
30. Find the area bounded by the curves $y=-x^{2}+6 x$ and $y=x^{2}-2 x-24$. (Hint: sketch the curves or make a sign chart.)
31. Find $F^{\prime}(4)$ if

$$
F(x)=\int_{\frac{x^{2}}{4}}^{x^{2}} \ln (\sqrt{t}) d t
$$

32. What value of $b>-1$ maximizes the integral:

$$
\int_{-1}^{b} x^{2}(7-x) d x ?
$$

33. Find a number c so that $f(c)$ is equal to the average value of the function $f(x)=1+x$ on the interval $[-1,3]$. Graphically, what does that mean?

Answers

1. (b), (c), (g), (k), (l), (o), (q), (s) are true
2. (a) $\frac{1}{2} x^{2}-4 \sqrt{x}-\frac{1}{x}+C$
(b) $-\frac{1}{2 \ln 4} 4^{-2 x}-\frac{1}{5} e^{-5 x}+C$
(c) $2 e^{\sqrt{2}} \sqrt{x}+\frac{1}{\sqrt{2}+1 / 2} x^{\sqrt{2}+1 / 2}+C$
(d) $\frac{2}{3} \ln |x|-\sin ^{-1}\left(\frac{x}{2}\right)+C$
3. (a) $\frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$, (b) $7 \frac{8}{9} \mathrm{~m}$
4. (b) Upper: 223 ft , Lower: 135 ft
5. (a) 44 (b) 31
6. 4,500 customers
7. Consider the difference between NET and TOTAL area.
8. $\frac{26}{3}$
9. 1
10. 13
11. (a) $-\frac{3}{8}$; (b) $\frac{9}{2}$; (c) $\frac{5 \pi}{4}$
12. -24
13. (a) $\frac{79}{6}$; (b) you cannot use the FTC as stated when f is discontinuous somewhere on the interval $[a, b]$
14. (a) $\frac{5}{6}$ and $\frac{3}{4}$; no general rule
15. (a) $-\sec \left(\frac{1}{x}\right)+C$, (c) $-\frac{1}{3} \ln |\sin 3 x+\cos 3 x|+C$
16. (a) $\ln |\ln x|+C$, (b) $-\frac{1}{3} \sqrt{4-3 e^{2 x}}+C$, (c) $\sin ^{-1}\left(\frac{x+3}{2}\right)+C$
17. (c) is true
18. $\frac{37}{12}$
19. $\frac{5}{4}$
20. $\frac{1}{2}$
21. 5. 4.5
1. (a) $\frac{2}{3}$
(b) $x(\ln x)^{2}-2 x \ln x+2 x+C$
(c) $\frac{1}{3} e^{x^{3}}+C$
(d) $\frac{x^{2} e^{x^{2}}}{2}-\frac{e^{x^{2}}}{2}+C$
(e) $-\frac{1}{\ln 4} 4^{-x}+C$
(f) $\frac{1}{\ln 4} x^{2} \cdot 4^{x}-\frac{2}{(\ln 4)^{2}} x \cdot 4^{x}+\frac{2}{(\ln 4)^{3}} 4^{x}+C$
2. (a) $\frac{x^{6} \ln x}{6}-\frac{x^{6}}{36}+C$
(b) $\frac{1}{12} \sin ^{6}(2 x)-\frac{1}{16} \sin ^{8}(2 x)+C$
(c) $\frac{1}{2} x+\frac{1}{12} \sin (6 x)+C$
(d) $-\frac{1}{2}(\ln [\cos (x)])^{2}+C$
(e) Cannot be evaluated
(f) $\frac{1}{3} \tan ^{3}(x)-\tan (x)+x+C$
(g) $\frac{2}{13} e^{2 x} \sin (3 x)-\frac{3}{13} e^{2 x} \cos (3 x)+C$
3. (e), (f) are true
4. (a) $e^{2}-e$
(b) $\frac{1}{6} \cos ^{6}(x)-\frac{1}{4} \cos ^{4}(x)+C$
(c) $\frac{1}{3} \arcsin \left(\frac{3 w}{2}\right)+C$
(d) $\frac{x}{2} \sin ^{2} x-\frac{1}{4} x+\frac{1}{8} \sin 2 x+C$
(e) $\tan (x)+\frac{\tan ^{3}(x)}{3}+C$
(f) $(x+1) \ln (x+1)-(x+1)+C$
5. 2
6. (a) $\int_{0}^{\frac{\pi}{2}} \cos (2 x) d x$, (b) 0
7. (a) 21, (b) 16.5
8. π
9. $\frac{512}{3}$ or approximately 170.67
10. $14 \ln 2$
11. $b=7$
12. $c=1$
