Math 1552: Integral Calculus

Review Problems for Test 1, Sections 4.8, 5.1-5.6, 8.2-8.3

1. Formula Recap: complete each of the following formulas.

(a) The general Riemann Sum is found using the formula:

(b) Some helpful summation formulas are:

$$\sum_{i=1}^{n} c =$$
$$\sum_{i=1}^{n} i =$$
$$\sum_{i=1}^{n} i^{2} =$$

(c) Properties of the definite integral:

$$\int_{a}^{a} f(x)dx =$$
$$\int_{b}^{a} f(x)dx =$$
$$\int_{a}^{b} cf(x)dx =$$

(d) State the Fundamental Theorem of Calculus:

(e) Using the FTC:

$$\frac{d}{dx} \left[\int_{a(x)}^{b(x)} f(t) dt \right] =$$

(f) If F is an antiderivative of f, that means:

(g) If F is an antiderivative of f, then:

$$\int f(g(x))g'(x)dx =$$
$$\int_{a}^{b} f(g(x))g'(x)dx =$$

(h) To find the area between two curves, use the following steps:

(h) Evaluate an integral using *integration by parts* if:

To choose the value of u, use the rule: _____.

(i) To evaluate integrals with powers or products of trig functions, use the following trig identities to try to obtain a u-substitution:

2. Fill in the integration formulas below:

$$\int x^n dx, \quad (n \neq -1) =$$
$$\int \sin(ax) dx =$$
$$\int \cos(ax) dx =$$

$$\int \sec^2(ax) dx =$$

$$\int \sec(ax) \tan(ax) dx =$$

$$\int \csc(ax) \cot(ax) dx =$$

$$\int \csc^2(ax) dx =$$

$$\int \frac{1}{1 + (ax)^2} dx =$$

$$\int \frac{1}{\sqrt{1 - (ax)^2}} dx =$$

$$\int \frac{1}{\sqrt{1 - (ax)^2}} dx =$$

$$\int e^{ax} dx =$$

$$\int b^{ax} dx =$$

$$\int b^{ax} dx =$$

$$\int \int \tan x dx =$$

$$\int \sec x dx =$$

$$\int \sec x dx =$$

$$\int \csc x dx =$$

$$\int \cot x dx =$$

Problems from Recitation Worksheets

1. True or False?

- (a) If F and G are both antiderivatives of f, then F = G.
- (b) The antiderivative of $\sec^2(3x)$ is $\frac{1}{3}\tan(3x)$.
- (c) The indefinite integral of a function f is the collection of all antiderivatives of f.
- (d) We know how to find the antiderivative of $\cos(x^2)$, and it is $\sin(x^2)$.
- (e) To find the upper sum U_f of a function f on [a, b], after partitioning the interval into

n pieces, evaluate f at the right-hand endpoint of each subinterval.

(f) When the interval [a, b] is partitioned into n pieces, there are exactly n endpoints.

(g) A partition of the interval [a, b] does not need to be evenly spaced in order to calculate a Riemann Sum.

(h) If f is positive and continuous on [a, b], and A is the actual area bounded by f, x = a, x = b, and the x-axis, then $L_f < A < U_f$.

(i) We always set x_i^* to be the right-hand endpoint of the i^{th} interval.

(j)
$$\sum_{i=1}^{n} i^2 = \left(\frac{n(n+1)}{2}\right)^2$$
.

(k) If $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx$ represents the total area bounded by f, x = a, x = b, and the x-axis.

(1) If f is a continuous function, then the function $F(x) = \int_a^x f(t)dt$ is an anti-derivative of f.

(m) If F is an anti-derivative of f, then $\int_a^b f(x)dx$ represents the slope of the secant line of F(x) on the interval [a, b].

(n) $\frac{d}{dx} \left[\int_{a}^{b} f(t) dt \right] = f(x).$

(o) Given that f is continuous on [a, b] and F'(x) = f(x), then F(b) - F(a) represents the net area bounded by the graph of y = f(x), the lines x = a, x = b, and the x-axis.

- (p) $\int f(x)g(x) dx = \left(\int f(x) dx\right) \cdot \left(\int g(x) dx\right)$
- (q) To evaluate $\int \sin^{-1}(x) dx$ by parts, choose $u = \sin^{-1}(x)$ and dv = dx.
- (r) To evaluate $\int x \ln(x) dx$ by parts, choose u = x and $dv = \ln(x) dx$.
- (s) To evaluate $\int \cot(x) dx$, integrate by substitution choosing $u = \sin(x)$.

2. Evaluate the following indefinite integrals.

(a)
$$\int \left(\sqrt{x} - \frac{1}{x}\right)^2 dx$$

(b)
$$\int \left[4^{-2x} + e^{-5x}\right] dx$$

(c)
$$\int \left(\frac{e^{\sqrt{2}} + x^{\sqrt{2}}}{\sqrt{x}}\right) dx$$

(d)
$$\int \left(\frac{2}{3x} - \frac{1}{\sqrt{4-x^2}}\right) dx$$

3. A particle travels with a velocity given by $v(t) = -\frac{1}{3}t^2 + 4t + 2$, where position is measured in meters and time in seconds.

(a) Find the acceleration of the particle when t = 1 second.

(b) If the initial position is 4 m, find the position of the particle at t = 1 second.

4. (*Applying the Riemann Sum*) You are driving when all of a sudden, you see traffic stopped in front of you. You slam the brakes to come to a stop. While your brakes are applied, the velocity of the car is measured, and you obtain the following measurements:

Time since applying breaks (sec)012345Velocity of car (in ft/sec)88604025100

(a) Plot the points on a curve of velocity vs. time.

(b) Using the points given, determine upper and lower bounds for the total distance traveled before the car came to a stop.

5. Estimate the area under the graph of $f(x) = 10 - x^2$ between the lines x = -3 and x = 2 using n = 5 equally spaced subintervals, by finding:

- (a) the upper sum, U_f .
- (b) the lower sum, L_f .

6. (*Applying the Definite Integral*) A marketing company is trying a new campaign. The campaign lasts for three weeks, and during this time, the company finds that it gains customers as a function of time according to the formula:

$$C(t) = 5t - t^2,$$

where t is time in weeks and the number of customers is given in thousands.

Using the general form of the definite integral,

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{i=1}^{n} f(x_i^*),$$

calculate the **average** number of customers gained during the three-week campaign.

7. Explain why the following property is true:

$$\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$$

Can you find an example where the inequality is strict?

8. Using the general form of the definite integral, $\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$, evaluate:

$$\int_2^4 (x-1)^2 dx.$$

9. Evaluate $\int_0^2 |x - 1| dx$ using integral properties from class. (HINT: draw a picture, and use geometry!)

10. Suppose that f(x) is an even function such that $\int_0^2 f(x)dx = 5$ and $\int_0^3 f(x)dx = 8$. Find the value of $\int_{-2}^3 f(x)dx$.

- 11. Evaluate the integrals:
- (a) $\int_{1}^{2} \frac{3x-5}{x^{3}} dx.$ (b) $\int_{2}^{5} (2-x)(x-5) dx.$ (c) $\int_{\pi}^{\frac{7\pi}{2}} \frac{1+\cos(2t)}{2} dt.$
- 12. Find F'(2) for the function

$$F(x) = \int_{\frac{8}{x}}^{x^2} \left(\frac{t}{1-\sqrt{t}}\right) dt.$$

13. (a) Given the function f below, evaluate $\int_1^9 f(x) dx$.

$$f(x) = \begin{cases} x^2 + 4, & x < 4\\ \sqrt{x} - x, & x \ge 4 \end{cases}$$

(b) Would you get the same answer to part (a) if you evaluated F(9) - F(1)? What does this tell you about the FTC and continuity?

14. (a) Evaluate the expressions:

$$\int_0^1 x(1+x) \, dx, \quad \left(\int_0^1 x \, dx \cdot \int_0^1 (1+x) \, dx\right)$$

(b) Looking at your answer in part (a), what, if anything, can you say in general about $\int (f(x) \cdot g(x)) dx$?

15. For each integral below, determine if we can evaluate the integral using the method of u-substitution. If the answer is "yes", evaluate the integral.

(a)
$$\int \frac{1}{x^2} \sec\left(\frac{1}{x}\right) \tan\left(\frac{1}{x}\right) dx$$

- (b) $\int x \csc^2(x) dx$
- (c) $\int \frac{\sin 3x \cos 3x}{\sin 3x + \cos 3x} dx$
- (d) $\int \tan(x^2) dx$

16. Evaluate the following integrals using the method of substitution.

(a)
$$\int \frac{1}{\ln(x^x)} dx$$

(b)
$$\int \frac{e^{2x}}{\sqrt{4-3e^{2x}}} dx$$

(c)
$$\int \frac{dx}{\sqrt{4-(x+3)^2}}$$

17. Suppose that y = f(x) and y = g(x) are both continuous functions on the interval [a, b]. Determine if each statement below is always true or sometimes false.

(a) Suppose that f(c) > g(c) for some number $c \in (a, b)$. Then the area bounded by f, g, x = a, and x = b can be found by evaluating the integral $\int_a^b (f(x) - g(x)) dx$.

(b) If $\int_{a}^{b} (f(x) - g(x)) dx$ evaluates to -5, then the area bounded by f, g, x = a, and x = b is 5.

(c) If f(x) > g(x) for every $x \in [a, b]$, then $\int_a^b |f(x) - g(x)| dx = \int_a^b (f(x) - g(x)) dx$.

18. Find the area bounded by the region between the curves $f(x) = x^3 + 2x^2$ and $g(x) = x^2 + 2x$.

19. Find the area bounded by the region enclosed by the three curves $y = x^3$, y = -x, and y = -1.

20. Find the area bounded by the curves $y = \cos x$ and $y = \sin(2x)$ on the interval $\left[0, \frac{\pi}{2}\right]$.

21. Find the area of the triangle with vertices at the points (0,1), (3,4), and (4,2). USE CALCULUS.

22. For each function below: (i) determine which method to use to evaluate the function (formula, u-substitution, or integration by parts, and (ii) evaluate the integral.

(a) $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} dx$ (b) $\int (\ln x)^{2} dx$ (c) $\int x^{2} e^{x^{3}} dx$ (d) $\int x^{3} e^{x^{2}} dx$ (e) $\int 4^{-x} dx$ (f) $\int x^{2} \cdot 4^{x} dx$

23. Determine if each integral below can be evaluated using a method we have learned so far (formula, u-substitution, integration by parts, or trig identities). If so, evaluate the integral. If not, explain why it cannot be evaluated.

- (a) $\int x^5 \ln(x) dx$
- (b) $\int \sin^5(2x) \cos^3(2x) \, dx$
- (c) $\int \cos^2(3x) dx$
- (d) $\int \tan(x) \ln[\cos(x)] dx$
- (e) $\int \sin(x^2) dx$
- (f) $\int \tan^4(x) dx$
- (g) $\int e^{2x} \sin(3x) dx$

24. True or false?

(a) When evaluating a **definite** integral using u-substitution, different choices of u may lead to different final answers.

(b) Integration by Parts is a Product Rule in integral form.

(c) The goal of integration by parts is to go from an integral $\int f'(x)g'(x)dx$ that we can't evaluate to an integral $\int f(x)g(x)dx$ that we can evaluate.

(d) Definite integrals can not be evaluated by Integration by Parts.

(e) If f is a continuous, increasing function, then the right-hand Riemann sum method always overestimates the definite integral.

(f) Let f be a continuous function and av(f) be the average of f. Then $av(f) \cdot (b-a) = \int_a^b f(x) dx$.

(g) When finding the area between the curves $y = x^3 - x$ and $y = x^2 + x$ it suffices to find the value of the definite integral $\int_{-1}^{2} \left[(x^3 - x) - (x^2 + x) \right] dx$, and then take the absolute value of this value to get the right answer.

(h) To find the area between the curves $y = x^3 - x$ and $y = x^2 + x$, first set the equations equal and solve to find the intersection points x = -1 and x = 2, plug in a test-point into the equations or graph the curves to determine **top** and **bot**, and then evaluate $\int_{-1}^{2} (\mathbf{top}) - (\mathbf{bot}) dx$.

(i) If
$$\int_0^1 f(x) \, dx = 9$$
 and $f(x) \ge 0$, then $\int_0^1 \sqrt{f(x)} \, dx = 3$.

25. Evaluate the following integrals.

(a)
$$\int_0^{\frac{\pi}{4}} \sec^2(t) e^{1 + \tan(t)} dt$$

(b) $\int \sin^3(x) \cos^3(x) dx$

- (c) $\int \frac{1}{\sqrt{4-9w^2}} dw$
- (d) $\int x \sin(x) \cos(x) dx$
- (e) $\int \sec^4(x) dx$
- (f) $\int \ln(x+1) dx$

26. Suppose: f(1) = 2, f(4) = 7, f'(1) = 5, f'(4) = 3 and f''(x) is continuous. Find the

value of:

$$\int_1^4 x f''(x) \, dx.$$

27. Consider the following limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} \cos\left(\pi \cdot \frac{i}{n}\right) \cdot \frac{\pi}{2n}$$

- (a) Express the limit as a definite integral.
- (b) Compute the definite integral from part (a).
- 28. Let f(x) = 3x + 4.

(a) Estimate the area of the region between the graph of f, the lines x = -1 and x = 2, and the x-axis using a upper sum with three rectangles of equal width.

(b) Find the actual area in part (a) by taking the limit of a general Riemann Sum using n equally spaced subintervals, and taking x_i^* as the right-hand endpoint of each interval.

29. Find the area bounded by the curves $y = \cos^2(x)$ and $y = -\sin^2(x)$, and the lines x = 0 and $x = \pi$. (Hint: draw a picture in GeoGebra - an online graphing tool.)

30. Find the area bounded by the curves $y = -x^2 + 6x$ and $y = x^2 - 2x - 24$. (Hint: sketch the curves or make a sign chart.)

31. Find F'(4) if

$$F(x) = \int_{\frac{x^2}{4}}^{x^2} \ln(\sqrt{t}) dt.$$

32. What value of b > -1 maximizes the integral:

$$\int_{-1}^{b} x^2 (7-x) dx?$$

33. Find a number c so that f(c) is equal to the average value of the function f(x) = 1 + x on the interval [-1, 3]. Graphically, what does that mean?

Answers

1. (b), (c), (g), (k), (l), (o), (q), (s) are true 2. (a) $\frac{1}{2}x^2 - 4\sqrt{x} - \frac{1}{x} + C$ (b) $-\frac{1}{2 \ln 4} 4^{-2x} - \frac{1}{5} e^{-5x} + C$ (c) $2e^{\sqrt{2}}\sqrt{x} + \frac{1}{\sqrt{2}+1/2}x^{\sqrt{2}+1/2} + C$ (d) $\frac{2}{3} \ln |x| - \sin^{-1} \left(\frac{x}{2}\right) + C$ 3. (a) $\frac{10}{3} m/s^2$, (b) $7\frac{8}{9}$ m 4. (b) Upper: 223 ft, Lower: 135 ft 5. (a) 44 (b) 31 6. 4,500 customers 7. Consider the difference between NET and TOTAL area. 8. $\frac{26}{3}$ 9.1 10. 13 11. (a) $-\frac{3}{8}$; (b) $\frac{9}{2}$; (c) $\frac{5\pi}{4}$ 12. -24 13. (a) $\frac{79}{6}$; (b) you cannot use the FTC as stated when f is discontinuous somewhere on the interval [a, b]14. (a) $\frac{5}{6}$ and $\frac{3}{4}$; no general rule 15. (a) $-\sec\left(\frac{1}{x}\right) + C$, (c) $-\frac{1}{3}\ln|\sin 3x + \cos 3x| + C$ 16. (a) $\ln |\ln x| + C$, (b) $-\frac{1}{3}\sqrt{4 - 3e^{2x}} + C$, (c) $\sin^{-1}\left(\frac{x+3}{2}\right) + C$ 17. (c) is true 18. $\frac{37}{12}$ 19. $\frac{5}{4}$ 20. $\frac{1}{2}$ 21. 5. 4.5 22. (a) $\frac{2}{3}$ (b) $x(\ln x)^2 - 2x\ln x + 2x + C$ (c) $\frac{1}{3}e^{x^3} + C$

(d)
$$\frac{x^2 e^{x^2}}{2} - \frac{e^{x^2}}{2} + C$$

(e) $-\frac{1}{\ln 4} 4^{-x} + C$
(f) $\frac{1}{\ln 4} x^2 \cdot 4^x - \frac{2}{(\ln 4)^2} x \cdot 4^x + \frac{2}{(\ln 4)^3} 4^x + C$
23. (a) $\frac{x^6 \ln x}{6} - \frac{x^6}{36} + C$
(b) $\frac{1}{12} \sin^6(2x) - \frac{1}{16} \sin^8(2x) + C$
(c) $\frac{1}{2}x + \frac{1}{12} \sin(6x) + C$
(d) $-\frac{1}{2} (\ln[\cos(x)])^2 + C$
(e) Cannot be evaluated
(f) $\frac{1}{3} \tan^3(x) - \tan(x) + x + C$
(g) $\frac{2}{13} e^{2x} \sin(3x) - \frac{3}{13} e^{2x} \cos(3x) + C$
24. (e), (f) are true
25. (a) $e^2 - e$
(b) $\frac{1}{6} \cos^6(x) - \frac{1}{4} \cos^4(x) + C$
(c) $\frac{1}{3} \arcsin(\frac{3w}{2}) + C$
(d) $\frac{x}{2} \sin^2 x - \frac{1}{4}x + \frac{1}{8} \sin 2x + C$
(e) $\tan(x) + \frac{\tan^3(x)}{3} + C$
(f) $(x+1) \ln(x+1) - (x+1) + C$
26. 2
27. (a) $\int_0^{\frac{\pi}{2}} \cos(2x) dx$, (b) 0
28. (a) 21, (b) 16.5
29. π
30. $\frac{512}{3}$ or approximately 170.67
31. 14 ln 2
32. $b = 7$
33. $c = 1$