

MATH 1552 COURSE SYLLABUS (E-PERSON SECTIONS), StMmer 2023					
Teatative Ceerse Schedule 					
Wed	M-	Tom	*od	In-	Fir
1	Mef 15 Sention 48 A As dervitus	$\begin{aligned} & \text { Mey } 16 \\ & \text { Catco mown } \\ & \text { wses } \end{aligned}$	May 17 Sectives 5.1-3: Ansa ander the euve		$\begin{aligned} & \text { Mey 17 } \\ & \text { Sectone } 53: \text { The Diffiris } \\ & \text { litegral } \end{aligned}$
${ }^{2}$	May 22 Sevties 53: Ma Doflinte litigral eves Section 5.4: The Fendeneral Teesse al Calentar		May 24 Serties $\$ 4$ The Funderveial Theonen af Calindes rees. Wiloene norry an nthaner potr ane	$\begin{array}{\|l} \hline \text { May } 28 \\ \text { WS } 53 \\ \text { Owiest } 51(48,51-53) \end{array}$	May 25 Serion S5 Inteprive ly Saldintion
3	Mry 27 No Class Mnnatal Din	$\begin{aligned} & \text { Mays } \\ & \text { wss4 } \\ & \text { wsisss } \end{aligned}$	Mrg 3 Sention 5: Amer Strwer Clave		hen 2 Section 8:2. lesegratice lo Farts
4	ine 3 Sevties 83: Freen of Tig Finetions		nat Revipollor Fed I		hay Serime 4 Tiremenvic starition
5	Na 12 Sestien 8.: Pretial tractions Section 45: L.'Tloptal't	$\begin{aligned} & \begin{array}{l} \text { her } 13 \\ \text { w } 884 \\ \text { ws } \end{array} \end{aligned}$	Las 14 Sertion R.8. Inpwiper Inticpale	$\begin{aligned} & \text { Sis is } \\ & \text { ws } 8.45 \\ & \text { Owie } 83\left(\begin{array}{ll} (4-25) \end{array}\right. \end{aligned}$	Jan 16 Section 10. : Sequesces
6	$\begin{aligned} & \text { Mocks } \\ & \text { nocuss } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { naxis } \\ & \text { wske } \\ & \text { wsio } \\ & \hline \end{aligned}$	Ren 21 Sectien 102: Miflabe Seles	han 22 WS 10.1 ane 	Nen 23 Sention 10.): lingeral Tee
${ }^{7}$	han 26 Sentioe 14 4: Conparien Tests	$\begin{aligned} & \text { h= } 27 \\ & \text { ws } 162 \\ & w>103 \end{aligned}$	heir Sertioe 13:S: Rase und Rest Tests Revirw for Tot?	han 29 Tuten(4.4.85, 45, 8. 18.148.3	Janso Sucsion 10: cont. Sevion lés Alematigy Series
$\stackrel{1}{ }$	mis noclats Tidpendener Deq	Nat nocuass Stider Recen	Ms Sention 106 teen Section 147: Nuser merisa	Nas W5 10.4 Ws 105 	hal Section 10.7, ceen.
\cdots	mal 10 Saction 10s-las Tylte palysumide end series	$\begin{aligned} & \hline \begin{array}{l} 2111 \\ w \times 106 \\ w>10 . \end{array}, \end{aligned}$	312 Sertices 10-5 103 , cont	MII Ws $10 \mathrm{~s}-3 \mathrm{~s}$ 	M14 Sectove 10.5-103, coen.
10	MI7 Sectiens 10 S-tag eme	$\begin{array}{\|l} \hline \text { Mis } \\ \text { Ws } 108.389 \\ \text { O vmina) } \\ \hline \end{array}$	Sill Sertiens 108. 102, oent	Tet es as atas	N121 Smetion $6: 1$: Vedunes hy Dods
11	M34 Sectien 6:1: Veluresty Cylinatical Slath Nisal Review	ग2 W8 $61-62$ Lait dey for Move havand	$\begin{array}{\|l\|} \hline \text { M26 } \\ \text { Realieg Dey } \end{array}$	M127	$\begin{aligned} & \text { MIS } \\ & \text { ENMLEXAM } \\ & \text { W2:AM-218PM } \end{aligned}$
12	Mal	人)=1	20. 2	Ans ${ }^{\text {a }}$	A $=4$

THEOREM 10-Direct Comparison Test
Let $\sum a_{n}$ and $\sum b_{n}$ be two series with $0 \leq a_{n} \leq b_{n}$ for all n. Then

1. If $\sum b_{n}$ converges, then $\sum a_{n}$ also converges.
2. If Σa_{n} diverges, then $\sum b_{n}$ also diverges.

THEOREM 11-Limit Comparison Test
Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$ (N an integer).

1. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$ and $c>0$, then $\sum a_{n}$ and Σb_{n} both converge or both diverge.
2. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
3. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Root Test

Lefi $\sum_{=} e$, bea series with all postive terms.
LeR-lin $\sqrt{e_{0}}$

(0) If $R>1$, then $\sum \mathrm{\sum}$, diverges.
(e) If $R=1$, then the len is INCOVCUSIVEME

Alternating Series Test

Let $\sum_{i} a_{e}$ be an altemating series.
(a) If $\sum_{k}\left|a_{k}\right|$ converges, then the series converges absolutely.
(b) If (a) fails, then if :
i) $\left\{a_{n}\right\}$ is a decreasing sequence, and
ii) $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$,
then the series converges conditionally.
(c) Otherwise, the series diverges.

EXERCISES 10.7

Intervals of Convergence

In Exercises 1-36, (a) find the series' radius and interval of convergence. For what values of x does the series converge (b) absolutely, (c) conditionally?

1. $\sum_{n=0}^{\infty} x^{n}$
2. $\sum_{n=0}^{\infty}(x+5)^{n}$
3. $\sum_{n=0}^{\infty}(-1)^{n}(4 x+1)^{n}$
4. $\sum_{n=1}^{\infty} \frac{(3 x-2)^{n}}{n}$
5. $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{10^{n}}$
6. $\sum_{n=0}^{\infty}(2 x)^{n}$
7. $\sum_{n=0}^{\infty} \frac{n(x+3)^{n}}{5^{n}}$
8. $\sum_{n=0}^{\infty} \frac{n x^{n}}{4^{n}\left(n^{2}+1\right)}$
9. $\sum_{n=0}^{\infty} \frac{\sqrt{n} x^{n}}{3^{n}}$
10. $\sum_{n=1}^{\infty} \sqrt[n]{n}(2 x+5)^{n}$
11. $\sum_{n=1}^{\infty}\left(2+(-1)^{n}\right) \cdot(x+1)^{n-1}$
12. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{2 n}(x-2)^{n}}{3 n}$
13. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n} x^{n}$
14. $\sum_{n=1}^{\infty}(\ln n) x^{n}$
15. $\sum_{n=1}^{\infty} n^{n} x^{n}$
16. $\sum_{n=0}^{\infty} n!(x-4)^{n}$
17. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^{n}}{n 2^{n}}$
18. $\sum_{n=0}^{\infty}(-2)^{n}(n+1)(x-1)^{n}$
19. $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$

Get the information you need about
$\sum 1 /\left(n(\ln n)^{2}\right)$ from Section 10.3 , Exercise 61 .
30. $\sum_{n=2}^{\infty} \frac{x^{n}}{n \ln n}$

Get the information you need about
31. $\sum_{n=1}^{\infty} \frac{(4 x-5)^{2 n+1}}{n^{3 / 2}}$
32. $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n+1}}{2 n+2}$
33. $\sum_{n=1}^{\infty} \frac{1}{2 \cdot 4 \cdot 6 \cdots(2 n)} x^{n}$
34. $\sum_{n=1}^{\infty} \frac{3 \cdot 5 \cdot 7 \cdots(2 n+1)}{n^{2} \cdot 2^{n}} x^{n+1}$
35. $\sum_{n=1}^{\infty} \frac{1+2+3+\cdots+n}{1^{2}+2^{2}+3^{2}+\cdots+n^{2}} x^{n}$
36. $\sum_{n=1}^{\infty}(\sqrt{n+1}-\sqrt{n})(x-3)^{n}$

In Exercises 37-40, find the series' radius of convergence.
37. $\sum_{n=1}^{\infty} \frac{n!}{3 \cdot 6 \cdot 9 \cdots 3 n} x^{n}$
38. $\sum_{n=1}^{\infty}\left(\frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{2 \cdot 5 \cdot 8 \cdots(3 n-1)}\right)^{2} x^{n}$
39. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{2^{n}(2 n)!} x^{n}$
40. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}} x^{n}$
(Hint: Apply the Root Test.)
In Exercises 41-48, use Theorem 20 to find the series' interval of convergence and, within this interval. the sum of the series as a function
7. $\sum_{n=0}^{\infty} \frac{n x^{n}}{n+2}$
8. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(x+2)^{n}}{n}$
9. $\sum_{n=1}^{\infty} \frac{x^{n}}{n \sqrt{n} 3^{n}}$
10. $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{\sqrt{n}}$
11. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$
12. $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{n!}$
13. $\sum_{n=1}^{\infty} \frac{4^{n} x^{2 n}}{n}$
14. $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n^{3} 3^{n}}$
15. $\sum_{n=0}^{\infty} \frac{x^{n}}{\sqrt{n^{2}+3}}$
16. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{\sqrt{n}+3}$
45. $\sum_{n=0}^{\infty}\left(\frac{\sqrt{x}}{2}-1\right)^{n}$
46. $\sum_{n=0}^{\infty}(\ln x)^{n}$
47. $\sum_{n=0}^{\infty}\left(\frac{x^{2}+1}{3}\right)^{n}$
48. $\sum_{n=0}^{\infty}\left(\frac{x^{2}-1}{2}\right)^{n}$

Using the Geometric Series

49. In Example 2 we represented the function $f(x)=2 / x$ as a power series about $x=2$. Use a geometric series to represent $f(x)$ as a power series about $x=1$, and find its interval of convergence.
50. Use a geometric series to represent each of the given functions as a power series about $x=0$, and find their intervals of convergence.
a. $f(x)=\frac{5}{3-x}$
b. $g(x)=\frac{3}{x-2}$
51. Represent the function $g(x)$ in Exercise 50 as a power series about $x=5$, and find the interval of convergence.
52. a. Find the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{8}{4^{n+2}} x^{n}
$$

b. Represent the power series in part (a) as a power series about $x=3$ and identify the interval of convergence of the new series. (Later in the chapter you will understand why the new interval of convergence does not necessarily include all of the numbers in the original interval of convergence.)

Theory and Examples

53. For what values of x does the series
$1-\frac{1}{2}(x-3)+\frac{1}{4}(x-3)^{2}+\cdots+\left(-\frac{1}{2}\right)^{n}(x-3)^{n}+\cdots$
converge? What is its sum? What series do you get if you differentiate the given series term by term? For what values of x does the new series converge? What is its sum?
54. If you integrate the series in Exercise 53 term by term, what new series do you get? For what values of x does the new series converge, and what is another name for its sum?
55. The series

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\frac{x^{9}}{9!}-\frac{x^{11}}{11!}+\cdots
$$

converges to $\sin x$ for all x.
a. Find the first six terms of a series for $\cos x$. For what values of x should the series converge?
b. By replacing x by $2 x$ in the series for $\sin x$, find a series that converges to $\sin 2 x$ for all x.
c. Using the result in part (a) and series multiplication, calculate the first six terms of a series for $2 \sin x \cos x$. Compare your answer with the answer in part (b).
56. The series

Section $10.7: 3,9,11,15,17,27,31,41,43,50$ (extra practice: 13,23)

In Exercises 41-48, use Theorem 20 to find the series' interval of convergence and, within this interval, the sum of the series as a function of x.
41. $\sum_{n=0}^{\infty} 3^{n} x^{n}$
42. $\sum_{n=0}^{\infty}\left(e^{x}-4\right)^{n}$
43. $\sum_{n=0}^{\infty} \frac{(x-1)^{2 n}}{4^{n}}$
44. $\sum_{n=0}^{\infty} \frac{(x+1)^{2 n}}{9^{n}}$
b. Find a series for $\int e^{x} d x$. Do you get the series for e^{x} ? Explain your answer.
c. Replace x by $-x$ in the series for e^{x} to find a series that converges to e^{-x} for all x. Then multiply the series for e^{x} and e^{-x} to find the first six terms of a series for $e^{-x} \cdot e^{x}$.
57. The series

$$
\tan x=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\frac{62 x^{9}}{2835}+\cdots
$$

converges to $\tan x$ for $-\pi / 2<x<\pi / 2$.
a. Find the first five terms of the series for $\ln |\sec x|$. For what values of x should the series converge?
b. Find the first five terms of the series for $\sec ^{2} x$. For what values of x should this series converge?
c. Check your result in part (b) by squaring the series given for $\sec x$ in Exercise 58.
58. The series
$\sec x=1+\frac{x^{2}}{2}+\frac{5}{24} x^{4}+\frac{61}{720} x^{6}+\frac{277}{8064} x^{8}+\cdots$
converges to sec x for $-\pi / 2<x<\pi / 2$.
a. Find the first five terms of a power series for the function $\ln |\sec x+\tan x|$. For what values of x should the series converge?
b. Find the first four terms of a series for $\sec x \tan x$. For what values of x should the series converge?
c. Check your result in part (b) by multiplying the series for $\sec x$ by the series given for $\tan x$ in Exercise 57 .

59. Uniqueness of convergent power series

a. Show that if two power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ are convergent and equal for all values of x in an open interval $(-c, c)$, then $a_{n}=b_{n}$ for every n. (Hint: Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$. Differentiate term by term to show that a_{n} and b_{n} both equal $f^{(n)}(0) /(n!)$.)
b. Show that if $\sum_{n=0}^{\infty} a_{n} x^{n}=0$ for all x in an open interval $(-c, c)$, then $a_{n}=0$ for every n.
60. The sum of the series $\sum_{n=0}^{\infty}\left(n^{2} / 2^{n}\right)$ To find the sum of this series, express $1 /(1-x)$ as a geometric series, differentiate both sides of the resulting equation with respect to x, multiply both sides of the result by x, differentiate again, multiply by x again, and set x equal to $1 / 2$. What do you get?
61. The sum of the alternating harmonic series This exercise will show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln 2
$$

answer with uic answei in patt (v).
56. The series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots
$$

converges to e^{x} for all x.
a. Find a series for $(d / d x) e^{x}$. Do you get the series for e^{x} ? Explain your answer.
and

$$
\lim _{n \rightarrow \infty}\left(h_{2 n}-\ln 2 n\right)=\gamma
$$

where γ is Euler's constant.
c. Use these facts to show that

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\lim _{n \rightarrow \infty} s_{2 n}=\ln 2
$$

62. Assume that the series $\sum a_{n} x^{n}$ converges for $x=4$ and diverges for $x=7$. Answer true (T), false (F), or not enough information given (N) for the following statements about the series.
a. Converges absolutely for $x=-4$
b. Diverges for $x=5$
c. Converges absolutely for $x=-8.5$
d. Converges for $x=-2$
e. Diverges for $x=8$
f. Diverges for $x=-6$
g. Converges absolutely for $x=0$
h. Converges absolutely for $x=-7.1$
63. Assume that the series $\sum a_{n}(x-2)^{n}$ converges for $x=-1$ and diverges for $x=6$. Answer true (T), false (F), or not enough information given (N) for the following statements about the series.
a. Converges absolutely for $x=1$
b. Diverges for $x=-6$
c. Diverges for $x=2$
d. Converges for $x=0$
e. Converges absolutely for $x=5$
f. Diverges for $x=4.9$
g. Diverges for $x=5.1$
h. Converges absolutely for $x=4$
64. Proof of Theorem 21 Assume that $a=0$ in Theorem 21 and that $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $-R<x<R$. Let $g(x)=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$. This exercise will prove that $f^{\prime}(x)=g(x)$, that is, $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=g(x)$.
a. Use the Ratio Test to show that $g(x)$ converges for $-R<x<R$.
b. Use the Mean Value Theorem to show that

$$
\frac{(x+h)^{n}-x^{n}}{h}=n c_{n}^{n-1}
$$

for some c_{n} between x and $x+h$ for $n=1,2,3, \ldots$.
c. Show that

Section 10.8: 3, 9, 15 (extra practice: 5, 7, 33)

EXERCISES 10.8

Finding Taylor Polynomials

In Exercises 1-10, find the Taylor polynomials of orders 0, 1, 2, and 3 generated by f at a.

1. $f(x)=e^{2 x}, \quad a=0$
2. $f(x)=\sin x, \quad a=0$
3. $f(x)=\ln x, \quad a=1$
4. $f(x)=\ln (1+x), \quad a=0$
5. $f(x)=1 / x, \quad a=2$
6. $f(x)=1 /(x+2), \quad a=0$
7. $f(x)=\sin x, \quad a=\pi / 4$
8. $f(x)=\tan x, \quad a=\pi / 4$
9. $f(x)=\sqrt{x}, \quad a=4$
10. $f(x)=\sqrt{1-x}, \quad a=0$

Finding Taylor Series at $x=0$ (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11-24.
11. e^{-x}
12. $x e^{x}$
13. $\frac{1}{1+x}$
14. $\frac{2+x}{1-x}$
15. $\sin 3 x$
16. $\sin \frac{x}{2}$
17. $7 \cos (-x)$
18. $5 \cos \pi x$
19. $\cosh x=\frac{e^{x}+e^{-x}}{2}$
20. $\sinh x=\frac{e^{x}-e^{-x}}{2}$
21. $x^{4}-2 x^{3}-5 x+4$
22. $\frac{x^{2}}{x+1}$
23. $x \sin x$

Finding Taylor and Maclaurin Series
In Exercises 25-34, find the Taylor series generated by f at $x=a$.
25. $f(x)=x^{3}-2 x+4, \quad a=2$
26. $f(x)=2 x^{3}+x^{2}+3 x-8, \quad a=1$
27. $f(x)=x^{4}+x^{2}+1, \quad a=-2$
44. Approximation properties of Taylor polynomials Suppose that $f(x)$ is differentiable on an interval centered at $x=a$ and that $g(x)=b_{0}+b_{1}(x-a)+\cdots+b_{n}(x-a)^{n}$ is a polynomial of degree n with constant coefficients b_{0}, \ldots, b_{n}. Let $E(x)=$ $f(x)-g(x)$. Show that if we impose on g the conditions
i) $E(a)=0$

The approximation error is zero at $x=a$.
ii) $\lim _{x \rightarrow a} \frac{E(x)}{(x-a)^{n}}=0, \quad \begin{aligned} & \text { The error is negligible when compared to } \\ & (x-a)^{n} .\end{aligned}$
then

$$
\begin{array}{r}
g(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
+\frac{f^{(n)}(a)}{n!}(x-a)^{n} .
\end{array}
$$

28. $f(x)=3 x^{5}-x^{4}+2 x^{3}+x^{2}-2, \quad a=-1$
29. $f(x)=1 / x^{2}, \quad a=1$
30. $f(x)=1 /(1-x)^{3}, \quad a=0$
31. $f(x)=e^{x}, \quad a=2$
32. $f(x)=2^{x}, \quad a=1$
33. $f(x)=\cos (2 x+(\pi / 2)), \quad a=\pi / 4$
34. $f(x)=\sqrt{x+1}, \quad a=0$

In Exercises 35-38, find the first three nonzero terms of the Maclaurin series for each function and the values of x for which the series converges absolutely.
35. $f(x)=\cos x-(2 /(1-x))$
36. $f(x)=\left(1-x+x^{2}\right) e^{x}$
37. $f(x)=(\sin x) \ln (1+x)$
38. $f(x)=x \sin ^{2} x$
39. $f(x)=x^{4} e^{x^{2}}$
40. $f(x)=\frac{x^{3}}{1+2 x}$

Theory and Examples
41. Use the Taylor series generated by e^{x} at $x=a$ to show that

$$
e^{x}=e^{a}\left[1+(x-a)+\frac{(x-a)^{2}}{2!}+\cdots\right] .
$$

42. (Continuation of Exercise 41.) Find the Taylor series generated by e^{x} at $x=1$. Compare your answer with the formula in Exercise 41 .
43. Let $f(x)$ have derivatives through order n at $x=a$. Show that the Taylor polynomial of order n and its first n derivatives have the same values that f and its first n derivatives have at $x=a$.

Thus, the Taylor polynomial $P_{n}(x)$ is the only polynomial of degree less than or equal to n whose error is both zero at $x=a$ and negligible when compared with $(x-a)^{n}$.

Quadratic Approximations The Taylor polynomial of order 2 generated by a twice-differentiable function $f(x)$ at $x=a$ is called the quadratic approximation of f at $x=a$. In Exercises 45-50, find the (a) linearization (Taylor polynomial of order 1) and (b) quadratic approximation of f at $x=0$.
45. $f(x)=\ln (\cos x)$
46. $f(x)=e^{\sin x}$
47. $f(x)=1 / \sqrt{1-x^{2}}$
48. $f(x)=\cosh x$
49. $f(x)=\sin x$

EXERCISES 10.9

Finding Taylor Series

Use substitution (as in Example 4) to find the Taylor series at $x=0$ of the functions in Exercises 1-12.

1. $e^{-5 x}$
2. $e^{-x / 2}$
3. $5 \sin (-x)$
4. $\sin \left(\frac{\pi x}{2}\right)$
5. $\cos 5 x^{2}$
6. $\cos \left(x^{2 / 3} / \sqrt{2}\right)$
7. $\ln \left(1+x^{2}\right)$
8. $\tan ^{-1}\left(3 x^{4}\right)$
9. $\frac{1}{1+\frac{3}{4} x^{3}}$
10. $\frac{1}{2-x}$
11. $\ln (3+6 x)$
12. $e^{-x^{2}+\ln 5}$

Use power series operations to find the Taylor series at $x=0$ for the functions in Exercises 13-30.
13. $x e^{x}$
14. $x^{2} \sin x$
15. $\frac{x^{2}}{2}-1+\cos x$
16. $\sin x-x+\frac{x^{3}}{3!}$
17. $x \cos \pi x$
18. $x^{2} \cos \left(x^{2}\right)$
19. $\cos ^{2} x\left(\right.$ Hint: $\cos ^{2} x=(1+\cos 2 x) / 2$.)
20. $\sin ^{2} x$
21. $\frac{x^{2}}{1-2 x}$
22. $x \ln (1+2 x)$
23. $\frac{1}{(1-x)^{2}}$
24. $\frac{2}{(1-x)^{3}}$
25. $x \tan ^{-1} x^{2}$
26. $\sin x \cdot \cos x$
27. $e^{x}+\frac{1}{1+x}$
28. $\cos x-\sin x$
29. $\frac{x}{3} \ln \left(1+x^{2}\right)$
30. $\ln (1+x)-\ln (1-x)$

Find the first four nonzero terms in the Maclaurin series for the functions in Exercises 31-38.
31. $e^{x} \sin x$
32. $\frac{\ln (1+x)}{1-x}$
33. $\left(\tan ^{-1} x\right)^{2}$
34. $\cos ^{2} x \cdot \sin x$
35. $e^{\sin x}$
36. $\sin \left(\tan ^{-1} x\right)$
37. $\cos \left(e^{x}-1\right)$
38. $\cos \sqrt{x}+\ln (\cos x)$

Error Estimates

39. Estimate the error if $P_{3}(x)=x-\left(x^{3} / 6\right)$ is used to estimate the value of $\sin x$ at $x=0.1$.
40. Estimate the error if $P_{4}(x)=1+x+\left(x^{2} / 2\right)+\left(x^{3} / 6\right)+\left(x^{4} / 24\right)$ is used to estimate the value of e^{x} at $x=1 / 2$.
41. For approximately what values of x can you replace $\sin x$ by $x-\left(x^{3} / 6\right)$ with an error of magnitude no greater than 5×10^{-4} ? Give reasons for your answer.
42. If $\cos x$ is replaced by $1-\left(x^{2} / 2\right)$ and $|x|<0.5$, what estimate can be made of the error? Does $1-\left(x^{2} / 2\right)$ tend to be too large, or too small? Give reasons for your answer.
43. How close is the approximation $\sin x=x$ when $|x|<10^{-3}$? For which of these values of x is $x<\sin x$?
44. The estimate $\sqrt{1+x}=1+(x / 2)$ is used when x is small. Estimate the error when $|x|<0.01$.
45. The approximation $e^{x}=1+x+\left(x^{2} / 2\right)$ is used when x is small. Use the Remainder Estimation Theorem to estimate the error when $|x|<0.1$.
46. (Continuation of Exercise 45.) When $x<0$, the series for e^{x} is an alternating series. Use the Alternating Series Estimation Theorem to estimate the error that results from replacing e^{x} by $1+x+\left(x^{2} / 2\right)$ when $-0.1<x<0$. Compare your estimate with the one you obtained in Exercise 45.

Theory and Examples

47. Use the identity $\sin ^{2} x=(1-\cos 2 x) / 2$ to obtain the Maclaurin series for $\sin ^{2} x$. Then differentiate this series to obtain the Maclaurin series for $2 \sin x \cos x$. Check that this is the series for $\sin 2 x$.
48. (Continuation of Exercise 47.) Use the identity $\cos ^{2} x=$ $\cos 2 x+\sin ^{2} x$ to obtain a power series for $\cos ^{2} x$.
49. Taylor's Theorem and the Mean Value Theorem Explain how the Mean Value Theorem (Section 4.2, Theorem 4) is a special case of Taylor's Theorem.
50. Linearizations at inflection points Show that if the graph of a twice-differentiable function $f(x)$ has an inflection point at $x=a$, then the linearization of f at $x=a$ is also the quadratic approximation of f at $x=a$. This explains why tangent lines fit so well at inflection points.
51. The (second) second derivative test Use the equation

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}\left(c_{2}\right)}{2}(x-a)^{2}
$$

to establish the following test.
Let f have continuous first and second derivatives and suppose that $f^{\prime}(a)=0$. Then
a. f has a local maximum at a if $f^{\prime \prime} \leq 0$ throughout an interval whose interior contains a;
b. f has a local minimum at a if $f^{\prime \prime} \geq 0$ throughout an interval whose interior contains a.
52. A cubic approximation Use Taylor's formula with $a=0$ and $n=3$ to find the standard cubic approximation of $f(x)=$ $1 /(1-x)$ at $x=0$. Give an upper bound for the magnitude of the error in the approximation when $|x| \leq 0.1$.
53. a. Use Taylor's formula with $n=2$ to find the quadratic approximation of $f(x)=(1+x)^{k}$ at $x=0$ (k a constant).
b. If $k=3$, for approximately what values of x in the interval [0,1] will the error in the quadratic approximation be less than $1 / 100$?

54. Improving approximations of π

a. Let P be an approximation of π accurate to n decimals. Show that $P+\sin P$ gives an approximation correct to $3 n$ decimals. (Hint: Let $P=\pi+x$.)
T b. Try it with a calculator.
55. The Taylor series generated by $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is $\sum_{n=0}^{\infty} a_{n} x^{n} \quad$ A function defined by a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ with a radius of convergence $R>0$ has a Taylor series that converges to the function at every point of $(-R, R)$. Show this by showing that the Taylor series generated by $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the series $\sum_{n=0}^{\infty} a_{n} x^{n}$ itself.

An immediate consequence of this is that series like

$$
x \sin x=x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\frac{x^{8}}{7!}+\cdots
$$

EXERCISES 10.10

Binomial Series

Find the first four terms of the binomial series for the functions in Exercises 1-10.

1. $(1+x)^{1 / 2}$
2. $(1+x)^{1 / 3}$
3. $(1-x)^{-3}$
4. $(1-2 x)^{1 / 2}$
5. $\left(1+\frac{x}{2}\right)^{-2}$
6. $\left(1-\frac{x}{3}\right)^{4}$
7. $\left(1+x^{3}\right)^{-1 / 2}$
8. $\left(1+x^{2}\right)^{-1 / 3}$
9. $\left(1+\frac{1}{x}\right)^{1 / 2}$
10. $\frac{x}{\sqrt[3]{1+x}}$

Find the binomial series for the functions in Exercises 11-14.
11. $(1+x)^{4}$
12. $\left(1+x^{2}\right)^{3}$
13. $(1-2 x)^{3}$
14. $\left(1-\frac{x}{2}\right)^{4}$

Approximations and Nonelementary Integrals

T In Exercises 15-18, use series to estimate the integrals' values with an error of magnitude less than 10^{-5}. (The answer section gives the integrals' values rounded to seven decimal places.)
15. $\int_{0}^{0.6} \sin x^{2} d x$
16. $\int_{0}^{0.4} \frac{e^{-x}-1}{x} d x$
17. $\int_{0}^{0.5} \frac{1}{\sqrt{1+x^{4}}} d x$
18. $\int_{0}^{0.35} \sqrt[3]{1+x^{2}} d x$

T Use series to approximate the values of the integrals in Exercises 1922 with an error of magnitude less than 10^{-8}.
19. $\int_{0}^{0.1} \frac{\sin x}{x} d x$
20. $\int_{0}^{0.1} e^{-x^{2}} d x$
21. $\int_{0}^{0.1} \sqrt{1+x^{4}} d x$
22. $\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x$
23. Estimate the error if $\cos t^{2}$ is approximated by $1-\frac{t^{4}}{2}+\frac{t^{8}}{4!}$ in the integral $\int_{0}^{1} \cos t^{2} d t$.
24. Estimate the error if $\cos \sqrt{t}$ is approximated by $1-\frac{t}{2}+\frac{t^{2}}{4!}-\frac{t^{3}}{6!}$ in the integral $\int_{0}^{1} \cos \sqrt{t} d t$.

In Exercises 25-28, find a polynomial that will approximate $F(x)$ throughout the given interval with an error of magnitude less than 10^{-3}.
25. $F(x)=\int_{0}^{x} \sin t^{2} d t, \quad[0,1]$
26. $F(x)=\int_{0}^{x} t^{2} e^{-t^{2}} d t, \quad[0,1]$
27. $F(x)=\int_{0}^{x} \tan ^{-1} t d t$,
(a) $[0,0.5]$
(b) $[0,1]$
28. $F(x)=\int_{0}^{x} \frac{\ln (1+t)}{t} d t$,
(a) $[0,0.5]$
(b) $[0,1]$

Indeterminate Forms
Use series to evaluate the limits in Exercises 29-40.
29. $\lim _{x \rightarrow 0} \frac{e^{x}-(1+x)}{x^{2}}$
30. $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{x}$
31. $\lim _{t \rightarrow 0} \frac{1-\cos t-\left(t^{2} / 2\right)}{t^{4}}$
32. $\lim _{\theta \rightarrow 0} \frac{\sin \theta-\theta+\left(\theta^{3} / 6\right)}{\theta^{5}}$
33. $\lim _{y \rightarrow 0} \frac{y-\tan ^{-1} y}{y^{3}}$
34. $\lim _{y \rightarrow 0} \frac{\tan ^{-1} y-\sin y}{y^{3} \cos y}$
35. $\lim _{x \rightarrow \infty} x^{2}\left(e^{-1 / x^{2}}-1\right)$
36. $\lim _{x \rightarrow \infty}(x+1) \sin \frac{1}{x+1}$
37. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{2}\right)}{1-\cos x}$
38. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\ln (x-1)}$
39. $\lim _{x \rightarrow 0} \frac{\sin 3 x^{2}}{1-\cos 2 x}$
40. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x \cdot \sin x^{2}}$

Using Table 10.1

In Exercises 41-52, use Table 10.1 to find the sum of each series.
41. $1+1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots$
42. $\left(\frac{1}{4}\right)^{3}+\left(\frac{1}{4}\right)^{4}+\left(\frac{1}{4}\right)^{5}+\left(\frac{1}{4}\right)^{6}+\cdots$
43. $1-\frac{3^{2}}{4^{2} \cdot 2!}+\frac{3^{4}}{4^{4} \cdot 4!}-\frac{3^{6}}{4^{6} \cdot 6!}+\cdots$
44. $\frac{1}{2}-\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\cdots$
45. $\frac{\pi}{3}-\frac{\pi^{3}}{3^{3} \cdot 3!}+\frac{\pi^{5}}{3^{5} \cdot 5!}-\frac{\pi^{7}}{3^{7} \cdot 7!}+\cdots$
46. $\frac{2}{3}-\frac{2^{3}}{3^{3} \cdot 3}+\frac{2^{5}}{3^{5} \cdot 5}-\frac{2^{7}}{3^{7} \cdot 7}+\cdots$
47. $x^{3}+x^{4}+x^{5}+x^{6}+\cdots$
48. $1-\frac{3^{2} x^{2}}{2!}+\frac{3^{4} x^{4}}{4!}-\frac{3^{6} x^{6}}{6!}+\cdots$
49. $x^{3}-x^{5}+x^{7}-x^{9}+x^{11}-\cdots$
50. $x^{2}-2 x^{3}+\frac{2^{2} x^{4}}{2!}-\frac{2^{3} x^{5}}{3!}+\frac{2^{4} x^{6}}{4!}-\cdots$
51. $-1+2 x-3 x^{2}+4 x^{3}-5 x^{4}+\cdots$
52. $1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\frac{x^{4}}{5}+\cdots$

Theory and Examples

53. Replace x by $-x$ in the Taylor series for $\ln (1+x)$ to obtain a series for $\ln (1-x)$. Then subtract this from the Taylor series for $\ln (1+x)$ to show that for $|x|<1$,

$$
\ln \frac{1+x}{1-x}=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)
$$

54. How many terms of the Taylor series for $\ln (1+x)$ should you add to be sure of calculating $\ln (1.1)$ with an error of magnitude less than 10^{-8} ? Give reasons for your answer.

Sections 10.8 and 10.9

Taylor Polynomials and Taylor Series

$$
f_{f(x)}^{\infty}=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Review Question:

The series: $\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{\sqrt{k^{2}+1}}$

A Converges absolutely
B. Converges conditionally
c. Diverges

Detn.

Taylor series for $f(x)$ at $x=0$

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

Power Series

A power series is an infinite polynomial and a function of x :
Power series in $x: f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$
Power series in $x-c$: $f(x)=\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$

Learning Goals

- Understand the process to finding a Taylor polynomial for a given function and center
- Estimate a function value using Taylor Polynomials and a specified error range
- Recognize standard formulas for basic MacLaurin series
- Manipulate the standard series to find MacLaurin series
for other functions
- Appropriately use error terms for alternating and nonalternating Taylor series

$$
f(x)=\frac{\sin (3 x)}{x}
$$

Common MacLaurin Series

$$
\begin{aligned}
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, x \in \Re \\
& \sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}, x \in \Re \\
& \cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}, x \in \Re \\
& \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k},|x|<1 \\
& \ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1},|x|<1
\end{aligned}
$$

$$
g(x)=\frac{2 x}{3+x}
$$

Ex. Compute The Taylor Series expansion of $f(x)=\frac{1}{x}$ at $x=2$

Taylor Series at $x=0$

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

Taylor Series at $x=a$

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Example 1:
Find the third degree Taylor polynomial of the function

$$
f(x)=\sqrt{x}
$$

in powers of $\mathrm{x}-1$.

$\Gamma_{a+x}=0$

$$
G^{a+x=a} \begin{aligned}
& P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

"Like a Taylor series,"
but not infin lite!"

Example 2:

The remainder term for P_{n}, where c is some

 number between a and x, is given by:$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

We can find an upper bound for the remainder using the formula:

$$
\left|R_{n}(x)\right| \leq \max \left|f^{(n+1)}(c)\right| \frac{|x-a|^{n+1}}{(n+1)!}
$$

$$
\begin{aligned}
& P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} \\
& P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

Common MacLaurin Series

Find a MacLaurin series for

$$
f(x)=\cos (2 x)
$$

1. $2 \sum_{t}(-1)^{t} \frac{x^{x}}{(2 k)!}$
2. $\sum_{1}(-1)^{1} \frac{x^{2+2}}{k!}$
3. $\left.\sum_{1}(-1)^{1}\right)^{\frac{2}{t} x^{2}}(2 k)!$

$$
\begin{aligned}
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}, x \in \Re \\
& \sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}, x \in \Re \\
& \cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}, x \in \Re \\
& \frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k},|x|<1 \\
& \ln (1+x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k+1}}{k+1},|x|<1
\end{aligned}
$$

