

Math 1552: Sections 10.3, 10.4, 10.5

Convergence Tests for Infinite Series

7	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30
	Section 10.4: Comparison	WS 10.2	Section 10.5: Ratio and	Test #2 (8.4-8.5, 4.5,	Section 10.5: cont.
	Tests	WS 10.3	Root Tests	8.8, 10.1-10.3)	Section 10.6: Alternating
			Review for Test 2		Series
	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7
	NO CLASS	NO CLASS	Section 10.6: cont.	WS 10.4	Section 10.7, cont.
	Independence Day	Student Recess	Section 10.7: Power series	WS 10.5	
				Quiz #5 (10.4-10.5)	
,	Jul 10	Jul 11	Jul 12	Jul 13	Jul 14
	Sections 10.8-10.9: Taylor	WS 10.6	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.
	polynomials and series	WS 10.7		Quiz #6 (10.6-10.8)	
10	Jul 17	Jul 18	Jul 19	Jul 20	Jul 21
	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.	Test #3 (10.4-10.9)	Section 6.1: Volumes by
		(3 versions)			Disks

THEOREM 10—Direct Comparison Test Let $\sum a_n$ and $\sum b_n$ be two series with $0 \le a_n \le b_n$ for all n. Then

1. If $\sum b_n$ converges, then $\sum a_n$ also converges. 2. If $\sum a_n$ diverges, then $\sum b_n$ also diverges.

THEOREM 11-Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer). 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c > 0, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

= 0 and $\sum b_n$ converges, then $\sum a_n$ converges. $= \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

$$\sum_{k=1}^{\infty} \frac{1}{1+2^k}$$

 $\sum_{k=2}^{\infty} \frac{1}{\sqrt{k} - 1}$

 $\sum_{n=1}^{\infty} \frac{5}{5n-1}$

THEOREM 11—Limit Comparison Test Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ and c>0, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- **2.** If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2+2n+1}$$

$$\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$$

10.4 **EXERCISES**

(extra practice: 13, 18, 23, 31, 39, 51, 58)

Direct Comparison Test

In Exercises 1-8, use the Direct Comparison Test to determine if each series converges or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 30}$$
 2. $\sum_{n=1}^{\infty} \frac{n-1}{n^4 + 2}$ 3. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$

$$2. \sum_{n=1}^{\infty} \frac{n-1}{n^4+2}$$

3.
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}-1}$$

4.
$$\sum_{n=2}^{\infty} \frac{n+2}{n^2-n}$$
 5. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^{3/2}}$ **6.** $\sum_{n=1}^{\infty} \frac{1}{n3^n}$

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

$$\sum_{n=1}^{\infty} \sqrt{n} + \frac{1}{n^{3/2}}$$

$$6. \sum_{n=1}^{\infty} \frac{1}{n3^n}$$

7.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n+4}{n^4+4}}$$

7.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n+4}{n^4+4}}$$
 8. $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{\sqrt{n^2+3}}$

Limit Comparison Test

In Exercises 9-16, use the Limit Comparison Test to determine if each series converges or diverges.

9.
$$\sum_{n=1}^{\infty} \frac{n-2}{n^3 - n^2 + 3}$$

(*Hint:* Limit Comparison with $\sum_{n=1}^{\infty} (1/n^2)$)

10.
$$\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^2+2}}$$

(Hint: Limit Comparison with $\sum_{n=1}^{\infty} (1/\sqrt{n})$)

11.
$$\sum_{n=2}^{\infty} \frac{n(n+1)}{(n^2+1)(n-1)}$$
 12.
$$\sum_{n=1}^{\infty} \frac{2^n}{3+4^n}$$

12.
$$\sum_{n=1}^{\infty} \frac{2^n}{3+4^n}$$

13.
$$\sum_{n=1}^{\infty} \frac{5^n}{\sqrt{n} \, 4^n}$$

14.
$$\sum_{n=1}^{\infty} \left(\frac{2n+3}{5n+4} \right)^n$$

15.
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$

(*Hint*: Limit Comparison with $\sum_{n=2}^{\infty} (1/n)$)

16.
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right)$$

(*Hint:* Limit Comparison with $\sum_{n=1}^{\infty} (1/n^2)$)

Determining Convergence or Divergence

Which of the series in Exercises 17-56 converge, and which diverge? Use any method, and give reasons for your answers.

17.
$$\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}}$$

17.
$$\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$$
 18. $\sum_{n=1}^{\infty} \frac{3}{n + \sqrt{n}}$ 19. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$

19.
$$\sum_{n=1}^{\infty} \frac{\sin^2}{2^n}$$

20.
$$\sum_{n=0}^{\infty} \frac{1+\cos n}{n^2}$$
 21. $\sum_{n=0}^{\infty} \frac{2n}{3n-1}$ **22.** $\sum_{n=0}^{\infty} \frac{n+1}{n^2\sqrt{n}}$

21.
$$\sum_{n=1}^{\infty} \frac{2}{3n}$$

22.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

$$\frac{10n+1}{+1)(n+2)}$$

23.
$$\sum_{n=1}^{\infty} \frac{10n+1}{n(n+1)(n+2)}$$
 24.
$$\sum_{n=2}^{\infty} \frac{5n^3-3n}{n^2(n-2)(n^2+5)}$$

25.
$$\sum_{n=1}^{\infty}$$

25.
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n$$
 26. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+2}}$ 27. $\sum_{n=3}^{\infty} \frac{1}{\ln(\ln n)}$

26.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3}}$$

28.
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^3}$$
 29. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n \ln n}}$ 30. $\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n^{3/2}}$

31.
$$\sum_{n=1}^{\infty} \frac{1}{1 + \ln n}$$

$$\sum_{n=2}^{\infty} \frac{\ln(n+1)}{n}$$
 33.

31.
$$\sum_{n=1}^{\infty} \frac{1}{1+\ln n}$$
 32.
$$\sum_{n=2}^{\infty} \frac{\ln(n+1)}{n+1}$$
 33.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

$$34. \sum_{n=1}^{\infty} \frac{\sqrt{n^2}}{n^2}$$

35.
$$\sum_{n=1}^{\infty} \frac{1-n}{n2^n}$$

34.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$
 35.
$$\sum_{n=1}^{\infty} \frac{1 - n}{n2^n}$$
 36.
$$\sum_{n=1}^{\infty} \frac{n + 2^n}{n^2 2^n}$$

37.
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$$

40.
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{3^n + 4^n}$$
 41. $\sum_{n=1}^{\infty} \frac{2^n - n}{n^{2^n}}$ 42. $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}$

37.
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$$
 38.
$$\sum_{n=1}^{\infty} \frac{3^{n-1}+1}{3^n}$$
 39.
$$\sum_{n=1}^{\infty} \frac{n+1}{n^2+3n} \cdot \frac{1}{5n}$$

43.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

(*Hint*: First show that $(1/n!) \le (1/n(n-1))$ for $n \ge 2$.)

44.
$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+2)!}$$
 45. $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ 46. $\sum_{n=1}^{\infty} \tan \frac{1}{n}$

$$45. \sum_{n=1}^{\infty} \sin \frac{1}{n}$$

$$46. \sum_{n=1}^{\infty} \tan \frac{1}{n}$$

47.
$$\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^{1.1}}$$
 48. $\sum_{n=1}^{\infty} \frac{\sec^{-1} n}{n^{1.3}}$ **49.** $\sum_{n=1}^{\infty} \frac{\coth n}{n^2}$

$$\sum_{n=1}^{\infty} n^{1.3}$$

$$49. \sum_{n=1}^{\infty} \frac{\coth n}{n^2}$$

$$50. \sum_{n=1}^{\infty} \frac{\tanh n}{n^2}$$

50.
$$\sum_{n=1}^{\infty} \frac{\tanh n}{n^2}$$
 51. $\sum_{n=1}^{\infty} \frac{1}{n^{\sqrt[n]{n}}}$ **52.** $\sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^2}$

$$52. \sum_{n=1}^{\infty} \frac{\sqrt[n]{n}}{n^2}$$

53.
$$\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$$
 54.
$$\sum_{n=1}^{\infty} \frac{1}{1+2^2+3^2+\cdots+n^2}$$
 55.
$$\sum_{n=1}^{\infty} \frac{n}{(\ln n)^2}$$
 56.
$$\sum_{n=1}^{\infty} \frac{(\ln n)^2}{n}$$

$$56. \sum_{n=0}^{\infty} \frac{(\ln n)^2}{n}$$

Theory and Examples

57. Prove (a) Part 2 and (b) Part 3 of the Limit Comparison Test.

58. If $\sum_{n=1}^{\infty} a_n$ is a convergent series of nonnegative numbers, can anything be said about $\sum_{n=1}^{\infty} (a_n/n)$? Explain.

59. Suppose that $a_n > 0$ and $b_n > 0$ for $n \ge N$ (N an integer). If $\lim_{n\to\infty} (a_n/b_n) = \infty$ and $\sum a_n$ converges, can anything be said about $\sum b_n$? Give reasons for your answer.

60. Prove that if $\sum a_n$ is a convergent series of nonnegative terms, then $\sum a_n^2$ converges.

61. Suppose that $a_n > 0$ and $\lim_{n \to \infty} a_n = \infty$. Prove that $\sum a_n$ diverges. **62.** Suppose that $a_n > 0$ and $\lim_{n \to \infty} n^2 a_n = 0$. Prove that $\sum a_n$ converges.

10.5 Absolute Convergence; The Ratio and Root Tests

7	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30
	Section 10.4: Comparison	WS 10.2	Section 10.5: Ratio and	Test #2 (8.4-8.5, 4.5,	Section 10.5: cont.
	Tests	WS 10.3	Root Tests	8.8, 10.1-10.3)	Section 10.6: Alternating
			Review for Test 2		Series
8	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7
	NO CLASS	NO CLASS	Section 10.6: cont.	WS 10.4	Section 10.7, cont.
	Independence Day	Student Recess	Section 10.7: Power series	WS 10.5	
				Quiz #5 (10.4-10.5)	
9	Jul 10	Jul 11	Jul 12	Jul 13	Jul 14
	Sections 10.8-10.9: Taylor	WS 10.6	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.
	polynomials and series	WS 10.7		Quiz #6 (10.6-10.8)	
10	Jul 17	Jul 18	Jul 19	Jul 20	Jul 21
	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.	Test #3 (10.4-10.9)	Section 6.1: Volumes by
		(3 versions)			Disks

Ratio Test	
Let $\sum_{i=1}^{n} a_i$ be a series with all positive t	erms.
Let $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.	
(a) If $L < 1$, then $\sum_{i=1}^{n} a_i$ coverges.	

(b) If L > 1, then $\sum_{i=1}^{n} a_i$ diverges.

Let $\sum_{i=1}^{\infty} a_{ii}$ be a series with all positive terms. Let $R = \lim_{n \to \infty} \sqrt{a_n}$. (a) If R < 1, then $\sum_{i=1}^{n} a_i$ coverges. (b) If R > 1, then $\sum_{i=1}^{n} a_i$ diverges.

Recap of last class:

- . Divergence test: if the limit is not 0, the series diverges
- . Comparison test: find a bigger series that converges or a smaller series that diverges
- . Integral test: use with a function that has an "easy" antiderivative

Recap of last class:

- . Limit Comparison test: pick a series that you know converges or diverges.
- If the limit of the ratio of terms in your series to the given series approaches a finite, positive number, then both series either converge or diverge.

Topics on Exam 2

* trig sub

* L'Hop

* Improper integrals

* Sequences 4 Convergence tests for serves

Ly integral test
Ly geometric series
Ly telescopiny series

* Divergence lest

$$\sum_{k=1}^{\infty} \left(1 + \frac{2}{k}\right)^{k^2}$$

$$\sum_{n=1}^{\infty} \frac{4^n}{(3n)^n}$$

EX. 200 (4n+1)

Section 10.5: 7, 13, 15, 17, 18, 31, 34, 57, 63, 67 (extra practice: 7, 17, 18, 19, 21, 25, 37, 42, 59)

EXERCISES 10.5

Using the Ratio Test

In Exercises 1-8, use the Ratio Test to determine if each series converges absolutely or diverges.

$$1. \sum_{n=1}^{\infty} \frac{2^n}{n!}$$

3.
$$\sum_{i=(n+1)^2}^{\infty} \frac{(n-1)!}{(n+1)^2}$$

2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{3^n}$$

5.
$$\sum_{i=1}^{\infty} \frac{n^4}{(-4)^n}$$

4.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n3^{n-1}}$$
6.
$$\sum_{n=1}^{\infty} \frac{3^{n+2}}{\ln n}$$

7.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2(n+2)!}{n! \ 3^{2n}}$$

8.
$$\sum_{n=2}^{\infty} \frac{n5^n}{(2n+3) \ln (n+1)}$$

Using the Root Test

In Exercises 9-16, use the Root Test to determine if each series converges absolutely or diverges.

9.
$$\sum_{n=1}^{\infty} \frac{7}{(2n+5)^n}$$

10.
$$\sum_{n=1}^{\infty} \frac{4^n}{(3n)^n}$$

11.
$$\sum_{n=1}^{\infty} \left(\frac{4n+3}{3n-5} \right)^n$$

12.
$$\sum_{n=1}^{\infty} \left(-\ln \left(e^2 + \frac{1}{n} \right) \right)^{n+1}$$

23.
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{1.25^n}$$

24.
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{3^n}$$
26.
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{3n}\right)^n$$

25.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{3}{n}\right)^n$$

27. $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$

28.
$$\sum_{n=1}^{\infty} \frac{(-\ln n)^n}{n^n}$$

29.
$$\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$

30.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)^n$$

31.
$$\sum_{n=1}^{\infty} \frac{e^n}{n^{\epsilon}}$$

32.
$$\sum_{n=1}^{\infty} \frac{n \ln n}{(-2)^n}$$

33.
$$\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{n!}$$

34.
$$\sum_{n=1}^{\infty} e^{-n}(n^3)$$

35.
$$\sum_{n=0}^{\infty} \frac{(n+3)!}{3!n!3^n}$$

36.
$$\sum_{n=1}^{\infty} \frac{n2^n(n+1)!}{3^n n!}$$

37.
$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$
39.
$$\sum_{n=1}^{\infty} \frac{-n}{(\ln n)^n}$$

$$38. \sum_{n=1}^{\infty} \frac{n!}{(-n)^n}$$

41.
$$\sum_{n=2}^{\infty} \frac{n! \ln n}{n(n+2)!}$$

40.
$$\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{(n/2)}}$$
42.
$$\sum_{n=2}^{\infty} \frac{(-3)^n}{n^3 2^n}$$

43.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

44.
$$\sum_{n=1}^{\infty} \frac{(2n+3)(2^n+3)}{3^n+2}$$

45.
$$\sum_{n=3}^{\infty} \frac{2^n}{n^2}$$

46.
$$\sum_{n=3}^{\infty} \frac{2^{n^2}}{n^{2^n}}$$

13.
$$\sum_{n=1}^{\infty} \frac{-8}{(3+(1/n))^{2n}}$$

14.
$$\sum_{n=1}^{\infty} \sin^n \left(\frac{1}{\sqrt{n}} \right)$$

15.
$$\sum_{n=1}^{\infty} (-1)^n \left(1 - \frac{1}{n}\right)^{n^2}$$

(Hint:
$$\lim_{n \to \infty} (1 + x/n)^n = e^x$$
)

16.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^{1+n}}$$

Determining Convergence or Divergence

In Exercises 17-46, use any method to determine if the series converges or diverges. Give reasons for your answer.

17.
$$\sum_{n=1}^{\infty} \frac{n}{n}$$

18.
$$\sum_{n=1}^{\infty} (-1)^n n^2 e^{-n}$$

19.
$$\sum_{n=1}^{\infty} n! (-e)^{-n}$$
21.
$$\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$

22.
$$\sum_{n=1}^{\infty} \left(\frac{n-2}{n}\right)^n$$

20. $\sum_{n=0}^{\infty} \frac{n!}{10^n}$

55.
$$a_1 = \frac{1}{2}$$
, $a_{n+1} = \sqrt[n]{a_n}$

56.
$$a_1 = \frac{1}{2}$$
, $a_{n+1} = (a_n)^{n+1}$

Convergence or Divergence

Which of the series in Exercises 57–64 converge, and which diverge? Give reasons for your answers.

57.
$$\sum_{n=1}^{\infty} \frac{2^n n! n!}{(2n)!}$$

58.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (3n)!}{n!(n+1)!(n+2)!}$$

59.
$$\sum_{n=1}^{\infty} \frac{(n!)^n}{(n^n)^2}$$

60.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^n}{n^{(n^2)}}$$

61.
$$\sum_{n=1}^{\infty} \frac{n^n}{2^{(n^2)}}$$

62.
$$\sum_{n=0}^{\infty} \frac{n^n}{(2^n)^2}$$

63.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{4^n 2^n n!}$$

64.
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot \cdots \cdot (2n-1)}{[2 \cdot 4 \cdot \cdots \cdot (2n)](3^n+1)}$$

65. Assume that b_n is a sequence of positive numbers converging to 4/5. Determine if the following series converge or diverge.

$$\mathbf{a.} \quad \sum_{n=1}^{\infty} (b_n)^{1/n}$$

$$\mathbf{b.} \ \sum_{n=1}^{\infty} \left(\frac{5}{4}\right)^n (b_n)$$

c.
$$\sum_{n=0}^{\infty} (b_n)^n$$

d.
$$\sum_{n=1}^{\infty} \frac{1000^n}{n! + b_n}$$

66. Assume that b_n is a sequence of positive numbers converging to 1/3. Determine if the following series converge or diverge.

a.
$$\sum_{n=1}^{\infty} \frac{b_{n+1}b_n}{n4^n}$$

b.
$$\sum_{n=1}^{\infty} \frac{n^n}{n! \ b^2_1 b^2_2 \cdots b^2_n}$$

Theony and Evamples

67. Neither the Ratio Test nor the Root Test helps with p-series. Try them on

$$\sum_{n=0}^{\infty} \frac{1}{n^n}$$

and show that both tests fail to provide information about conver-

Math 1552 Section 10.6

Alternating Series

7	Jun 26	Jun 27	Jun 28	Jun 29	Jun 30
	Section 10.4: Comparison	WS 10.2	Section 10.5: Ratio and	Test #2 (8.4-8.5, 4.5,	Section 10.5: cont.
	Tests	WS 10.3	Root Tests	8.8, 10.1-10.3)	Section 10.6: Alternating
			Review for Test 2		Series
8	Jul 3	Jul 4	Jul 5	Jul 6	Jul 7
	NO CLASS	NO CLASS	Section 10.6: cont.	WS 10.4	Section 10.7, cont.
	Independence Day	Student Recess	Section 10.7: Power series	WS 10.5	
				Quiz #5 (10.4-10.5)	
9	Jul 10	Jul 11	Jul 12	Jul 13	Jul 14
	Sections 10.8-10.9: Taylor	WS 10.6	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.
	polynomials and series	WS 10.7		Quiz #6 (10.6-10.8)	
10	Jul 17	Jul 18	Jul 19	Jul 20	Jul 21
	Sections 10.8-10.9, cont.	WS 10.8-10.9	Sections 10.8-10.9, cont.	Test #3 (10.4-10.9)	Section 6.1: Volumes by
		(3 versions)			Disks
		1			

$$\sum_{k=1}^{\infty} (-1)^k \frac{1}{\sqrt{k+4}}$$

$$\sum_{k=1}^{\infty} \left(-1\right)^k \frac{k}{3^k}$$

Alternating Series Test

Let $\sum a_k$ be an alternating series.

- (a) If $\sum_{\mathbf{k}} |a_{\mathbf{k}}|$ converges, then the series *converges absolutely*.
- (b) If (a) fails, then if:
- i) $\{a_n\}$ is a decreasing sequence, and
- ii) $\lim_{n\to\infty} |a_n| = 0$, then the series *converges conditionally*. (c) Otherwise, the series *diverges*.

 $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k^3}{k^3 + 2k + 1}$

Example:

Estimate the sum of the series below within an error range of 0.001.

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!}$$

Estimating the Sum

Then: $|s_n - L| < |a_{n+1}|$.

Let $\sum_k a_k$ be a convergent alternating series with a sum of L.

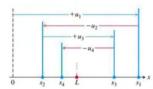
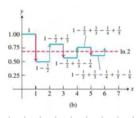


FIGURE 10.15 The partial sums of an alternating series that satisfies the hypotheses of Theorem 15 for N = 1 straddle the limit from the beginning.

EXAMPLE 1 The alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$



EXERCISES

10.6 (extra practice: 20, 22, 27, 31, 91)

Determining Convergence or Divergence

In Exercises 1–14, determine if the alternating series converges or diverges. Some of the series do not satisfy the conditions of the Alternating Series Test.

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$$

2.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^{3/2}}$$

3.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n3^n}$$

4.
$$\sum_{n=2}^{\infty} (-1)^n \frac{4}{(\ln n)^2}$$

5.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2+1}$$

6.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2 + 5}{n^2 + 4}$$

7.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n^2}$$

8.
$$\sum_{n=1}^{\infty} (-1)^n \frac{10^n}{(n+1)!}$$

9.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$$

10.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n}$$

11.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{\ln n}{n}$$

12.
$$\sum_{n=1}^{\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right)$$

13.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n+1}}{n+1}$$

14.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{3\sqrt{n+1}}{\sqrt{n+1}}$$

Absolute and Conditional Convergence

Which of the series in Exercises 15-48 converge absolutely, which converge, and which diverge? Give reasons for your answers.

15.
$$\sum_{n=0}^{\infty} (-1)^{n+1} (0.1)^n$$

16.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{(0.1)^n}{n}$$

17.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

18.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$$

19.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^3+1}$$

20.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n!}{2^n}$$

21.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+3}$$

22.
$$\sum_{n=0}^{\infty} (-1)^n \frac{\sin n}{n^2}$$

23.
$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{3+n}{5+n}$$

24.
$$\sum_{n=1}^{\infty} \frac{(-2)^{n+1}}{n+5^n}$$

25.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1+n}{n^2}$$

26.
$$\sum_{n=1}^{\infty} (-1)^{n+1} (\sqrt[n]{10})$$

27.
$$\sum_{n=0}^{\infty} (-1)^n n^2 (2/3)^n$$

28.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{n \ln n}$$

29.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\tan^{-1} n}{n^2 + 1}$$

30.
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n - \ln n}$$

31.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

32.
$$\sum_{n=0}^{\infty} (-5)^{-n}$$

33.
$$\sum_{n=0}^{\infty} \frac{(-100)^n}{n!}$$

34.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2 + 2n + 1}$$

35.
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n\sqrt{n}}$$

36.
$$\sum_{n=1}^{\infty} \frac{\cos n\pi}{n}$$

37.
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$$

38.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} (n!)^2}{(2n)!}$$

Error Estimation

In Exercises 49–52, estimate the magnitude of the error involved in using the sum of the first four terms to approximate the sum of the entire series.

49.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

50.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{10^n}$$

51.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(0.01)^n}{n}$$
 As you will see in So the sum is $\ln (1.01)$.

52.
$$\frac{1}{1+t} = \sum_{n=0}^{\infty} (-1)^n t^n$$
, $0 < t < 1$

In Exercises 53–56, determine how many terms should be used to estimate the sum of the entire series with an error of less than 0.001.

53.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2 + 3}$$

$$54. \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1}$$

55.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n+3\sqrt{n})^3}$$
 56. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(\ln(n+2))}$

In Exercises 57–82, use any method to determine whether the series converges or diverges. Give reasons for your answer.

57.
$$\sum_{n=1}^{\infty} \frac{3^n}{n^n}$$

58.
$$\sum_{n=1}^{\infty} \frac{3^n}{n^3}$$

59.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+3} \right)$$

60.
$$\sum_{n=1}^{\infty} \left(\frac{1}{2n+1} - \frac{1}{2n+2} \right)$$

61.
$$\sum_{n=0}^{\infty} (-1)^n \frac{(n+2)!}{(2n)!}$$

62.
$$\sum_{n=2}^{\infty} \frac{(3n)!}{(n!)^3}$$

63.
$$\sum_{n=2/\sqrt{5}}^{\infty} n^{-2/\sqrt{5}}$$

64.
$$\sum_{n=1}^{\infty} \frac{3}{10 + n^{4/3}}$$

65.
$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^{n^2}$$

66.
$$\sum_{n=0}^{\infty} \left(\frac{n+1}{n+2} \right)^n$$

67.
$$\sum_{n=1}^{\infty} \frac{n-2}{n^2+3n} \left(-\frac{2}{3}\right)^n$$

68.
$$\sum_{n=0}^{\infty} \frac{n+1}{(n+2)!} \left(\frac{3}{2}\right)^n$$

39.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{2^n n! n}$$

$$\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{2^n n! n}$$
 40.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n!)^2 3^n}{(2n+1)!}$$

41.
$$\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$$
 42. $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^2+n} - n)$

43.
$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n + \sqrt{n}} - \sqrt{n} \right)$$

$$\stackrel{\infty}{=} (-1)^n$$

44.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$

45.
$$\sum_{n=1}^{\infty} (-1)^n \operatorname{sech} n$$
 46. $\sum_{n=1}^{\infty} (-1)^n \operatorname{csch} n$
47. $\frac{1}{4} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} + \frac{1}{12} - \frac{1}{14} + \cdots$

48.
$$1 + \frac{1}{4} - \frac{1}{9} - \frac{1}{16} + \frac{1}{25} + \frac{1}{36} - \frac{1}{49} - \frac{1}{64} + \cdots$$

69.
$$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \cdots$$

70.
$$1 - \frac{1}{8} + \frac{1}{64} - \frac{1}{512} + \frac{1}{4096} - \cdots$$

71.
$$\sum_{n=3}^{\infty} \sin\left(\frac{1}{\sqrt{n}}\right)$$
 72. $\sum_{n=1}^{\infty} \tan(n^{1/n})$

73.
$$\sum_{n=2}^{\infty} \frac{n}{\ln n}$$
 74. $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$

75.
$$\sum_{n=2}^{\infty} \ln \left(\frac{n+2}{n+1} \right)$$
 76. $\sum_{n=2}^{\infty} \left(\frac{\ln n}{n} \right)^3$

77.
$$\sum_{n=2}^{\infty} \frac{1}{1+2+2^2+\cdots+2^n}$$

79.
$$\sum_{n=0}^{\infty} (-1)^n \frac{e^n}{e^n + e^{n^2}}$$
 80.
$$\sum_{n=0}^{\infty} \frac{(2n+3)(2^n+1)^n}{3^n+2}$$

81.
$$\sum_{n=1}^{\infty} \frac{n^2 3^n}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$$
 82.
$$\sum_{n=1}^{\infty} \frac{4 \cdot 6 \cdot 8 \cdots (2n)}{5^{n+1} (n+2)!}$$

$$\boxed{\rm T}$$
 Approximate the sums in Exercises 83 and 84 with an error of magnitude less than 5 \times 10 $^{-6}.$

83.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!}$$
 As you will see in Section 10.9, the sum is cos 1, the cosine of 1 radian.

84.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n!}$$
 As you will see in Section 10.9 the sum is e^{-1} .

Theory and Examples

85. a. The series

$$\frac{1}{3} - \frac{1}{2} + \frac{1}{9} - \frac{1}{4} + \frac{1}{27} - \frac{1}{8} + \dots + \frac{1}{3^n} - \frac{1}{2^n} + \dots$$

does not meet one of the conditions of Theorem 14. Which one?

Use Theorem 17 to find the sum of the series in part (a).

90. Show that if $\sum_{n=1}^{\infty} a_n$ converges absolutely, then

$$\left|\sum_{n=1}^{\infty} a_n\right| \leq \sum_{n=1}^{\infty} |a_n|.$$

91. Show that if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge absolutely, then so do the following.

a.
$$\sum_{n=1}^{\infty} (a_n + b_n)$$
 b. $\sum_{n=1}^{\infty} (a_n - b_n)$

c.
$$\sum_{n=1}^{\infty} ka_n (k \text{ any number})$$

92. Show by example that $\sum_{n=1}^{\infty} a_n b_n$ may diverge even if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge.

93. If $\sum a_n$ converges absolutely, prove that $\sum a_n^2$ converges.

94. Does the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n^2} \right)$$

converge or diverge? Justify your answer.

T 95. In the alternating harmonic series, suppose the goal is to arrange the terms to get a new series that converges to -1/2. Start the new